1
|
Metge BJ, Williams L, Swain CA, Hinshaw DC, Elhamamsy AR, Chen D, Samant RS, Shevde LA. Ribosomal RNA Biosynthesis Functionally Programs Tumor-Associated Macrophages to Support Breast Cancer Progression. Cancer Res 2025; 85:1459-1478. [PMID: 39903832 PMCID: PMC11999771 DOI: 10.1158/0008-5472.can-24-0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/06/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Macrophages are important cellular components of the innate immune system, serving as the first line of immune defense. They are also among the first immune cells to be reprogrammed by the evolving tumor milieu into tumor-supportive macrophages that facilitate tumor progression and promote therapeutic evasion. In this study, we uncovered that macrophages from preneoplastic breast lesions were enriched for ribosome biosynthesis genes, indicating that this is an early event that is maintained in the tumor tissue. Furthermore, following treatment with irradiation or chemotherapy, breast tumors featured an abundance of tumor-supporting macrophages that displayed an enrichment of signatures of rRNA expression and ribosome biosynthesis. Consistently, rRNA synthesis was increased in tumor-supportive macrophages. In preclinical models of mammary cancer, a low dose of the RNA biogenesis inhibitor BMH-21 converted protumor macrophages to tumor-suppressive macrophages and supported an inflammatory tumor microenvironment. Inhibition of rRNA transcription stimulated a nucleolar stress response that activated the p53 and NF-κB pathways, which orchestrated impaired ribosome biogenesis checkpoint signaling that induced an inflammatory program in macrophages. Finally, inhibiting ribosome biogenesis augmented the effectiveness of neoadjuvant therapy. Together, these findings provide evidence that ribosome biogenesis is a targetable dependency to reprogram the tumor immune microenvironment. Significance: Increased ribosome biogenesis is an integral attribute of protumor macrophages that occurs early during breast tumorigenesis and represents a therapeutically actionable process to reactivate the tumor-suppressive functions of macrophages.
Collapse
Affiliation(s)
- Brandon J. Metge
- Department of Pathology, The University of Alabama at Birmingham
| | - Li’an Williams
- Department of Pathology, The University of Alabama at Birmingham
- UAB Medical Scientist Training Program
| | - Courtney A. Swain
- Department of Pathology, The University of Alabama at Birmingham
- UAB Medical Scientist Training Program
| | | | - Amr R. Elhamamsy
- Department of Pathology, The University of Alabama at Birmingham
| | - Dongquan Chen
- Department of Medicine, The University of Alabama at Birmingham
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham
| | - Rajeev S. Samant
- Department of Pathology, The University of Alabama at Birmingham
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, The University of Alabama at Birmingham
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham
| |
Collapse
|
2
|
Dai J, Zhu J, Zhu L, Wang X, Bao J, Chen X, Zhou Y, Min L, Qi H, Liu Q, Shen J, Tian M, Shao J, Li R, Liu B. An investigator-initiated clinical study in patients with refractory or recurrent solid tumors: 'R-ISV-FOLactis' trial. Future Oncol 2024; 20:1393-1400. [PMID: 39034683 PMCID: PMC11376417 DOI: 10.1080/14796694.2024.2357063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/15/2024] [Indexed: 07/23/2024] Open
Abstract
Aim: In situ vaccination, a kind of therapeutic cancer vaccine, can be realized by radiotherapy and intratumoral immune injection. This study combines intratumoral injection, radiotherapy and PD-1 blockade for synergistic antitumor effect.Materials & methods: Patients with advanced solid tumors who are unresponsive or intolerant to standard treatment will be treated with hypofractionated radiotherapy, intratumoral injection of FOLactis, PD-1 blockade. The primary end point is to observe the efficacy and safety, with the secondary end point to evaluate abscopal effects and the correlation between the immunological rationale and efficacy.Discussion: The combined regimen will be utilized to trigger antitumor immunity and is expected to be feasible and effective and provide a novel option for the comprehensive treatment of cancer.Clinical Trial Registration: ChiCTR2200060660 (ChiCTR.gov.cn).
Collapse
Affiliation(s)
- Juanjuan Dai
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junmeng Zhu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lijing Zhu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaolu Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinfeng Bao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinjie Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yingling Zhou
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Limei Min
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoyue Qi
- Department of Oncology, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Shen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Manman Tian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Shao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rutian Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Yang Q, Zhou X, Fang J, Lin A, Zhang H, Cheng Q, Liu Z, Luo P, Zhang J. Development and validation of a radiosensitivity model to evaluate radiotherapy benefits in pan-cancer. Cancer Sci 2024; 115:1820-1833. [PMID: 38571294 PMCID: PMC11145160 DOI: 10.1111/cas.16168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Radiotherapy, one of the most fundamental cancer treatments, is confronted with the dilemma of treatment failure due to radioresistance. To predict the radiosensitivity and improve tumor treatment efficiency in pan-cancer, we developed a model called Radiation Intrinsic Sensitivity Evaluation (RISE). The RISE model was built using cell line-based mRNA sequencing data from five tumor types with varying radiation sensitivity. Through four cell-derived datasets, two public tissue-derived cohorts, and one local cohort of 42 nasopharyngeal carcinoma patients, we demonstrated that RISE could effectively predict the level of radiation sensitivity (area under the ROC curve [AUC] from 0.666 to 1 across different datasets). After the verification by the colony formation assay and flow cytometric analysis of apoptosis, our four well-established radioresistant cell models successfully proved higher RISE values in radioresistant cells by RT-qPCR experiments. We also explored the prognostic value of RISE in five independent TCGA cohorts consisting of 1137 patients who received radiation therapy and found that RISE was an independent adverse prognostic factor (pooled multivariate Cox regression hazard ratio [HR]: 1.84, 95% CI 1.39-2.42; p < 0.01). RISE showed a promising ability to evaluate the radiotherapy benefit while predicting the prognosis of cancer patients, enabling clinicians to make individualized radiotherapy strategies in the future and improve the success rate of radiotherapy.
Collapse
Affiliation(s)
- Qi Yang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xinyi Zhou
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianbo Fang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Anqi Lin
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongman Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Wischmann FJ, Troschel FM, Frankenberg M, Kemper B, Vijaya Kumar A, Sicking M, Ibrahim SA, Kiesel L, Götte M, Eich HT, Greve B. Tumor suppressor miR-218 directly targets epidermal growth factor receptor (EGFR) expression in triple-negative breast cancer, sensitizing cells to irradiation. J Cancer Res Clin Oncol 2023; 149:8455-8465. [PMID: 37088795 PMCID: PMC10374822 DOI: 10.1007/s00432-023-04750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE MicroRNA-218 (miR-218) is a key regulator of numerous processes relevant to tumor progression. In the present study, we aimed to characterize the relationship between miR-218 and the Epidermal Growth Factor Receptor (EGFR) as well as to understand downstream effects in triple-negative breast cancer (TNBC). METHODS We assessed miR-218 and EGFR expression in cell lines and publicly available primary breast cancer gene expression data. We then overexpressed miR-218 in two TNBC cell lines and investigated effects on EGFR and downstream mitogen-activated protein (MAP) kinase signaling. Luciferase reporter assay was used to characterize a direct binding interaction between miR-218 and EGFR mRNA. Digital holographic microscopy helped investigate cell migration and dry mass after miR-218 overexpression. Cell division and invasion were assessed microscopically, while radiation response after miR-218 overexpression alone or combined with additional EGFR knockdown was investigated via clonogenic assays. RESULTS We found an inverse correlation between EGFR expression and miR-218 levels in cell lines and primary breast cancer tissues. MiR-218 overexpression resulted in a downregulation of EGFR via direct binding of the mRNA. Activation of EGFR and downstream p44/42 MAPK signaling were reduced after pre-miR-218 transfection. Cell proliferation, motility and invasiveness were inhibited whereas cell death and mitotic catastrophe were upregulated in miR-218 overexpressing cells compared to controls. MiR-218 overexpressing and EGFR siRNA-treated cells were sensitized to irradiation, more than miR-218 overexpressing cells alone. CONCLUSION This study characterizes the antagonistic relationship between miR-218 and EGFR. It also demonstrates downstream functional effects of miR-218 overexpression, leading to anti-tumorigenic cellular changes.
Collapse
Affiliation(s)
- Franz-Josef Wischmann
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany.
| | - Maj Frankenberg
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Archana Vijaya Kumar
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | | | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany.
| |
Collapse
|
5
|
Koukourakis IM, Tiniakos D, Kouloulias V, Zygogianni A. The molecular basis of immuno-radiotherapy. Int J Radiat Biol 2022; 99:715-736. [PMID: 36383201 DOI: 10.1080/09553002.2023.2144960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Radiotherapy (RT) and immunotherapy are powerful anti-tumor treatment modalities. Experimental research has demonstrated an important interplay between the cytotoxic effects of RT and the immune system. This systematic review provides an overview of the basics of anti-tumor immunity and focuses on the mechanisms underlying the interplay between RT and immune anti-tumor response that set the molecular basis of immuno-RT. CONCLUSIONS An 'immunity acquired equilibrium' mimicking tumor dormancy can be achieved post-irradiation treatment, with the balance shifted toward tumor eradication or regrowth when immune cells' cytotoxic effects or cancer proliferation rate prevail, respectively. RT has both immunosuppressive and immune-enhancing properties. The latter effect is also known as radio-vaccination. Its mechanisms involve up- or down-regulation of membrane molecules, such as PD-L1, HLA-class-I, CD80/86, CD47, and Fas/CD95, that play a vital role in immune checkpoint pathways and increased cytokine expression (e.g. INFα,β,γ, IL1,2, and TNFα) by cancer or immune cells. Moreover, the interactions of radiation with the tumor microenvironment (fibroblasts, tumor-infiltrating lymphocytes, monocytes, and dendritic cells are also an important component of radio-vaccination. Thus, RT may have anti-tumor vaccine properties, whose sequels can be exploited by immunotherapy agents to treat different cancer subtypes effectively.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, First Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| | - Dina Tiniakos
- Department of Pathology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Vassilis Kouloulias
- Radiation Oncology Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, First Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| |
Collapse
|
6
|
Nishiga Y, Drainas AP, Baron M, Bhattacharya D, Barkal AA, Ahrari Y, Mancusi R, Ross JB, Takahashi N, Thomas A, Diehn M, Weissman IL, Graves EE, Sage J. Radiotherapy in combination with CD47 blockade elicits a macrophage-mediated abscopal effect. NATURE CANCER 2022; 3:1351-1366. [PMID: 36411318 PMCID: PMC9701141 DOI: 10.1038/s43018-022-00456-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022]
Abstract
Radiation therapy is a mainstay of cancer treatment but does not always lead to complete tumor regression. Here we combine radiotherapy with blockade of the 'don't-eat-me' cell-surface molecule CD47 in small cell lung cancer (SCLC), a highly metastatic form of lung cancer. CD47 blockade potently enhances the local antitumor effects of radiotherapy in preclinical models of SCLC. Notably, CD47 blockade also stimulates off-target 'abscopal' effects inhibiting non-irradiated SCLC tumors in mice receiving radiation. These abscopal effects are independent of T cells but require macrophages that migrate into non-irradiated tumor sites in response to inflammatory signals produced by radiation and are locally activated by CD47 blockade to phagocytose cancer cells. Similar abscopal antitumor effects were observed in other cancer models treated with radiation and CD47 blockade. The systemic activation of antitumor macrophages following radiotherapy and CD47 blockade may be particularly important in patients with cancer who suffer from metastatic disease.
Collapse
Affiliation(s)
- Yoko Nishiga
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Maya Baron
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Debadrita Bhattacharya
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amira A Barkal
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Yasaman Ahrari
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Rebecca Mancusi
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jason B Ross
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Xu T, Jiang Y, Yuan S, Zhang L, Chen X, Zhao W, Cai L, Xiao B, Jia L. Andrographolide Inhibits ER-Positive Breast Cancer Growth and Enhances Fulvestrant Efficacy via ROS-FOXM1-ER-α Axis. Front Oncol 2022; 12:899402. [PMID: 35615146 PMCID: PMC9124841 DOI: 10.3389/fonc.2022.899402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is the main subtype of breast cancer (BRCA) with high incidence and mortality. Andrographolide (AD), a major active component derived from the traditional Chinese medicine Andrographis paniculate, has substantial anti-cancer effect in various tumors. However, the antitumor efficacy and the underlying molecular mechanisms of AD on ER-positive breast cancer are poorly understood. In the present study, we demonstrated that andrographolide (AD) significantly inhibited the growth of ER-positive breast cancer cells. Mechanistically, AD suppressed estrogen receptor 1 (ESR1, encodes ER-α) transcription to inhibit tumor growth. Further studies revealed that AD induced ROS production to down-regulate FOXM1-ER-α axis. Conversely, inhibiting ROS production with N-acetylcysteine (NAC) elevated AD-decreased ER-α expression, which could be alleviated by FOXM1 knockdown. In addition, AD in combination with fulvestrant (FUL) synergistically down-regulated ER-α expression to inhibit ER-positive breast cancer both in vitro and in vivo. These findings collectively indicate that AD suppresses ESR1 transcription through ROS-FOXM1 axis to inhibit ER-positive breast cancer growth and suggest that AD might be a potential therapeutic agent and fulvestrant sensitizer for ER-positive breast cancer treatment.
Collapse
|
8
|
Makowska A, Lelabi N, Nothbaum C, Shen L, Busson P, Tran TTB, Eble M, Kontny U. Radiotherapy Combined with PD-1 Inhibition Increases NK Cell Cytotoxicity towards Nasopharyngeal Carcinoma Cells. Cells 2021; 10:2458. [PMID: 34572108 PMCID: PMC8470143 DOI: 10.3390/cells10092458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) in endemic regions and younger patients is characterized by a prominent lymphomononuclear infiltration. Radiation is the principal therapeutic modality for patients with NPC. Recent data suggest that the efficacy of radiotherapy in various cancers can be augmented when combined with immune checkpoint blockade. Here, we investigate the effect of radiotherapy on the killing of NPC cells by Natural Killer (NK) cells. METHODS NPC cell lines and a patient-derived xenograft were exposed to NK cells in the context of radiotherapy. Cytotoxicity was measured using the calcein-release assay. The contribution of the PD-L1/PD-1 checkpoint and signaling pathways to killing were analyzed using specific inhibitors. RESULTS Radiotherapy sensitized NPC cells to NK cell killing and upregulated expression of PD-1 ligand (PD-L1) in NPC cells and PD-1 receptor (PD-1) in NK cells. Blocking of the PD-L1/PD-1 checkpoint further increased the killing of NPC cells by NK cells in the context of radiotherapy. CONCLUSION Radiation boosts the killing of NPC cells by NK cells. Killing can be further augmented by blockade of the PD-L1/PD-1 checkpoint. The combination of radiotherapy with PD-L1/PD-1 checkpoint blockade could therefore increase the efficacy of radiotherapy in NPC tumors.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Nora Lelabi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Christina Nothbaum
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Lian Shen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| | - Pierre Busson
- CNRS UMR 8126, Gustave Roussy, Université Paris Sud, Université Paris-Saclay, 94805 Villejuif, France; (P.B.); (T.T.B.T.)
| | - Tram Thi Bao Tran
- CNRS UMR 8126, Gustave Roussy, Université Paris Sud, Université Paris-Saclay, 94805 Villejuif, France; (P.B.); (T.T.B.T.)
| | - Michael Eble
- Department of Radiation Oncology, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany;
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, Rhenish-Westphalian Technical University, 52074 Aachen, Germany; (A.M.); (N.L.); (C.N.); (L.S.)
| |
Collapse
|
9
|
Iskandar A, Zulkifli NW, Ahmad MK, Theva Das K, Zulkifle N. OTUB1 expression and interaction network analyses in MCF-7 breast cancer cells. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Sia J, Hagekyriakou J, Chindris I, Albarakati H, Leong T, Schlenker R, Keam SP, Williams SG, Neeson PJ, Johnstone RW, Haynes NM. Regulatory T Cells Shape the Differential Impact of Radiation Dose-Fractionation Schedules on Host Innate and Adaptive Antitumor Immune Defenses. Int J Radiat Oncol Biol Phys 2021; 111:502-514. [PMID: 34023423 DOI: 10.1016/j.ijrobp.2021.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE We examined how radiation dose per fraction (DPF) and total dose, as represented by biological effective dose (BED), can independently and differentially affect the immunomodulatory capacity of radiation therapy (RT). METHODS AND MATERIALS AT3-OVA mammary and MC38 colorectal tumors in C57BL/6 mice were irradiated with rationally selected dose-fractionation schedules, alone or with immune-modulating or -depleting agents. Tumor growth was monitored as a readout of therapeutic response. Flow cytometry and RNA sequencing of mouse tumors and analysis of transcriptomic data sets from irradiated human cancers were used to examine the immunomodulatory effects of the different radiation schedules. RESULTS In AT3-OVA tumors, radiation DPF rather than BED determined the ability of RT to evoke local antitumor CD8+ T cell responses and synergize with anti-PD-1 therapy. Natural killer cell-mediated control of irradiated tumors was more sensitive to radiation BED. Radiation-induced regulatory T cell (Treg) responses, which were detected in both mouse and human tumors, were a major factor underlying the differential activation of adaptive immunity by radiation DPF and the activity of natural killer cells during the early phase of response to RT. Targeted inhibition of Treg responses within irradiated tumors rescued and enhanced local tumor control by RT and permitted the generation of abscopal and immunologic memory responses, irrespective of radiation schedule. MC38 tumors did not support the induction of an amplified Treg response to RT and were highly vulnerable to its immunoadjuvant effects. CONCLUSIONS Local radiation-induced Treg responses are influenced by radiation schedule and tumor type and are a critical determinant of the immunoadjuvant potential of RT and its ability to synergize with T cell-targeted immunotherapy.
Collapse
Affiliation(s)
- Joseph Sia
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Radiation Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jim Hagekyriakou
- Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ioana Chindris
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Hassan Albarakati
- Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Trevor Leong
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Radiation Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ramona Schlenker
- Roche Pharmaceutical Research and Early Development, Roche Innovation Centre Munich, Penzberg, Germany
| | - Simon P Keam
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia; Cancer Immunology Research Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Scott G Williams
- Radiation Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Cancer Immunology Research Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ricky W Johnstone
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Nicole M Haynes
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
11
|
Dan T, Shastri AA, Palagani A, Buraschi S, Neill T, Savage JE, Kapoor A, DeAngelis T, Addya S, Camphausen K, Iozzo RV, Simone NL. miR-21 Plays a Dual Role in Tumor Formation and Cytotoxic Response in Breast Tumors. Cancers (Basel) 2021; 13:cancers13040888. [PMID: 33672628 PMCID: PMC7924198 DOI: 10.3390/cancers13040888] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary miR-21 is an oncogenic microRNA that has been associated with breast tumor growth and metastasis in vitro and is also noted to be upregulated by cytotoxic stressors in model systems and in breast cancer patients who have undergone radiation. In the present study, our findings demonstrate the novel role of miR-21 in vivo for breast cancer initiation and metastases, and in sensitizing tumor cells to cytotoxic therapy by upregulating the FAS/FASL signaling pathway. Abstract Breast cancer (BrCa) relies on specific microRNAs to drive disease progression. Oncogenic miR-21 is upregulated in many cancers, including BrCa, and is associated with poor survival and treatment resistance. We sought to determine the role of miR-21 in BrCa tumor initiation, progression and treatment response. In a triple-negative BrCa model, radiation exposure increased miR-21 in both primary tumor and metastases. In vitro, miR-21 knockdown decreased survival in all BrCa subtypes in the presence of radiation. The role of miR-21 in BrCa initiation was evaluated by implanting wild-type miR-21 BrCa cells into genetically engineered mouse models where miR-21 was intact, heterozygous or globally ablated. Tumors were unable to grow in the mammary fat pads of miR-21−/− mice, and grew in ~50% of miR-21+/− and 100% in miR-21+/+ mice. The contribution of miR-21 to progression and metastases was tested by crossing miR-21−/− mice with mice that spontaneously develop BrCa. The global ablation of miR-21 significantly decreased the tumorigenesis and metastases of BrCa, while sensitizing tumors to radio- and chemotherapeutic agents via Fas/FasL-dependent apoptosis. Therefore, targeting miR-21 alone or in combination with various radio or cytotoxic therapies may represent novel and efficacious therapeutic modalities for the future treatment of BrCa patients.
Collapse
Affiliation(s)
- Tu Dan
- Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (T.D.); (A.A.S.); (A.P.); (T.D.)
| | - Anuradha A. Shastri
- Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (T.D.); (A.A.S.); (A.P.); (T.D.)
| | - Ajay Palagani
- Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (T.D.); (A.A.S.); (A.P.); (T.D.)
| | - Simone Buraschi
- Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Department of Pathology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (S.B.); (T.N.); (A.K.); (R.V.I.)
| | - Thomas Neill
- Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Department of Pathology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (S.B.); (T.N.); (A.K.); (R.V.I.)
| | - Jason E. Savage
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA; (J.E.S.); (K.C.)
| | - Aastha Kapoor
- Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Department of Pathology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (S.B.); (T.N.); (A.K.); (R.V.I.)
| | - Tiziana DeAngelis
- Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (T.D.); (A.A.S.); (A.P.); (T.D.)
| | - Sankar Addya
- Department of Cancer Biology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA; (J.E.S.); (K.C.)
| | - Renato V. Iozzo
- Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Department of Pathology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (S.B.); (T.N.); (A.K.); (R.V.I.)
| | - Nicole L. Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA 19107, USA; (T.D.); (A.A.S.); (A.P.); (T.D.)
- Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, 111 South 11th Street, Bodine Cancer Center, G-301G, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
12
|
Chen J, Liu X, Zeng Z, Li J, Luo Y, Sun W, Gong Y, Zhang J, Wu Q, Xie C. Immunomodulation of NK Cells by Ionizing Radiation. Front Oncol 2020; 10:874. [PMID: 32612950 PMCID: PMC7308459 DOI: 10.3389/fonc.2020.00874] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells play a critical role in the antitumor immunity. Ionizing radiation (IR) has a pronounced effect on modifying NK cell biology, while the molecular mechanisms remain elusive. In this review, we briefly introduce the anti-tumor activity of NK cells and summarize the impact of IR on NK cells both directly and indirectly. On one hand, low-dose ionizing radiation (LDIR) activates NK functions while high-dose ionizing radiation (HDIR) is likely to partially impair NK functions, which can be reversed by interleukin (IL)-2 pretreatment. On the other hand, NK functions may be adjusted by other immune cells and the alternated malignant cell immunogenicity under the settings of IR. Various immune cells, such as the tumor-associated macrophage (TAM), dendritic cell (DC), regulatory T cell (Treg), myeloid-derived suppressor cell (MDSC), and tumor exhibited ligands, such as the natural killer group 2 member D ligand (NKG2DL), natural cytotoxicity receptors (NCR) ligand, TNF-related apoptosis-inducing ligand-receptor (TRAIL-R), and FAS, have been involved in this process. Better understanding the molecular basis is a promising way in which to augment NK-cell-based antitumor immunity in combination with IR.
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Human Genetics Resource Preservation Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Liang CY, Huang ZG, Tang ZQ, Xiao XL, Zeng JJ, Feng ZB. FOXO1 and hsa-microRNA-204-5p affect the biologic behavior of MDA-MB-231 breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1146-1158. [PMID: 32509089 PMCID: PMC7270695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
RNA molecules and targeting microRNA (miRNA) have been reported as novel focuses in recent research on breast cancer. This study aimed to probe the expression of FOXO1 in the MDA-MB-231 cell line and to explore the target effects of FOXO1 with hsa-microRNA-204-5p (miR-204) on the biologic behavior of MDA-MB-231 cells. The expression of FOXO1 mRNA and protein in MDA-MB-231 cells were derived and verified from the public databases, literature, and experimental assays, then the downregulation of FOXO1 was confirmed in the MDA-MB-231 cell line. The target binding of FOXO1 and miR-204 was predicted by miRWalk and confirmed by luciferase reporter assays. MiR-204 targeted the 3' untranslated region of FOXO1 and reduced FOXO1 expression in miR-204-transfected cells, resulting in cell growth amplification but inhibition of cell migration and apoptosis, which were assessed using the MTT method, wound healing assays, and flow cytometry, respectively. The protein levels of serine-threonine kinase (AKT), c-jun N-terminal kinase (JNK), extracellular regulatory protein kinase (ERK), and the phosphorylated protein kinases (P-AKT, P-JNK, and P-ERK) were measured by western blot. It was found that AKT, JNK, and ERK remained constant, but P-AKT, P-JNK, and P-ERK were upregulated after miR-204 transfection. In summary, the expression of FOXO1 was downregulated in MDA-MB-231 cells; and the target binding of miR-204 and FOXO1 affected phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signal pathways, leading to different alterations of cellular activity in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Chang-Yu Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Zhong-Qing Tang
- Department of Pathology, Gongren Hospital of WuzhouWuzhou, Guangxi, P. R. China
| | - Xiao-Ling Xiao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| |
Collapse
|
14
|
Jeon HY, Ham SW, Kim JK, Jin X, Lee SY, Shin YJ, Choi CY, Sa JK, Kim SH, Chun T, Jin X, Nam DH, Kim H. Ly6G + inflammatory cells enable the conversion of cancer cells to cancer stem cells in an irradiated glioblastoma model. Cell Death Differ 2019; 26:2139-2156. [PMID: 30804471 PMCID: PMC6748155 DOI: 10.1038/s41418-019-0282-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023] Open
Abstract
Most glioblastomas frequently recur at sites of radiotherapy, but it is unclear if changes in the tumor microenvironment due to radiotherapy influence glioblastoma recurrence. Here, we demonstrate that radiation-induced senescent glioblastoma cells exhibit a senescence-associated secretory phenotype that functions through NFκB signaling to influence changes in the tumor microenvironment, such as recruitment of Ly6G+ inflammatory cells and vessel formation. In particular, Ly6G+ cells promote conversion of glioblastoma cells to glioblastoma stem cells (GSCs) through the NOS2-NO-ID4 regulatory axis. Specific inhibition of NFκB signaling in irradiated glioma cells using the IκBα super repressor prevents changes in the tumor microenvironment and dedifferentiation of glioblastoma cells. Treatment with Ly6G-neutralizing antibodies also reduces the number of GSCs and prolongs survival in tumor-bearing mice after radiotherapy. Clinically, a positive correlation exists between Ly6G+ cells and the NOS2-NO-ID4 regulatory axis in patients diagnosed with recurrent glioblastoma. Together, our results illustrate important roles for Ly6G+ inflammatory cells recruited by radiation-induced SASP in cancer cell dedifferentiation and tumor recurrence.
Collapse
Affiliation(s)
- Hee-Young Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seok Won Ham
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jun-Kyum Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Xiong Jin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Jae Shin
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Chang-Yong Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jason K Sa
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea. .,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea. .,Department of Medical Engineering, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Tumor grade and molecular subtypes on local control in breast cancer radiotherapy: Does fractionation really matter? A retrospective control study group. Clin Transl Radiat Oncol 2018; 15:7-12. [PMID: 30582015 PMCID: PMC6288309 DOI: 10.1016/j.ctro.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
The aim of this current study was to assess whether the tumour grade and molecular subtypes have influenced local control in the whole breast hypofractionated radiotherapy (HRT) over standard radiotherapy (SRT) in early breast node negative cancer patients by a retrospective control group study. Data of 215 patients treated with hypofractionated radiotherapy at our institution from 2008 to 2011 were prospectively collected and then compared with 215 pts treated with SRT in a control group study. The local relapse free survival (LRFS) in both arms was compared on the basis of variables defined by tumour grade (Nottingham Grading System), and Molecular subtypes. Kaplan-Meier method was applied to estimate the LRFS in both groups. Chi-squared and univariate Cox proportional hazards model were conducted for all variables in both groups to assess the impact on local control. Statistical significance was assumed at P < .05. Statistical significant variables at univariate analysis were then included in multivariate Cox proportional hazards model. The median follow up duration was 9.5 years (7–13 yrs); the Kaplan Meyer 8 year LRFS did not reach any statistical significant difference between the two groups (P = . 836). At univariate Cox analysis tumour grade 3 was significantly related to local relapse only in the SRT group (P = .041) while, among molecular subtypes, no differences were found for all groups; for Her2 + noL no difference was found (P = .233). Multivariate analysis confirmed Her2 non-luminal subtype as an independent variable for local relapse regardless the fractionation arm (P = .045). Breast cancer subtypes show a different radiosensitivity, which is independent by fractionation.
Collapse
|
16
|
Charaghvandi KR, Van't Westeinde T, Yoo S, Houweling AC, Rodrigues A, Verkooijen HM, Philippens MEP, van Asselen B, Horton JK, van den Bongard HJGD. Single dose partial breast irradiation using an MRI linear accelerator in the supine and prone treatment position. Clin Transl Radiat Oncol 2018; 14:1-7. [PMID: 30406210 PMCID: PMC6215022 DOI: 10.1016/j.ctro.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Accepted: 09/03/2018] [Indexed: 11/25/2022] Open
Abstract
Background In selected patients with early-stage and low-risk breast cancer, an MRI-linac based treatment might enable a radiosurgical, non-invasive alternative for current standard breast conserving therapy. Aim To investigate whether single dose accelerated partial breast (APBI) to the intact tumor in both the prone and supine radiotherapy positions on the MRI-linac is dosimetrically feasible with respect to predefined coverage and organs at risk (OAR) constraints. Material & methods For 20 patients with cTis or low-risk cT1N0M0 non-lobular breast carcinoma, previously treated with single dose preoperative APBI in the supine (n = 10) or prone (n = 10) position, additional intensity modulated radiotherapy plans with 7 coplanar beams in the presence of a 1.5T magnetic field were generated. A 20 Gy and 15 Gy dose was prescribed to the gross tumor and clinical target volume, respectively. The percentage of plans achieving predefined organ at risk (OAR) constraints, currently used in clinical practice, was assessed. Dosimetry differences between the prone versus supine approach and the MRI-linac versus clinically delivered plans were evaluated. Results All MRI-linac plans met the coverage and predefined OAR constraints. The prone approach appeared to be more favorable with respect to the chest wall, and ipsilateral lung dose compared to the supine position. No dosimetric differences were observed for the ipsilateral breast. No treatment position was clearly more beneficial for the skin or heart, since dosimetry varied among parameters. Overall, the MRI-linac and clinical plans were comparable, with minor absolute dosimetric differences. Conclusion MRI-linac based single dose APBI to the intact tumor is a promising and a dosimetrically feasible strategy in patients with low-risk breast cancer. Preliminary OAR dosimetry favored the prone radiotherapy position.
Collapse
Affiliation(s)
- K R Charaghvandi
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T Van't Westeinde
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Yoo
- Department of Radiation Oncology, Duke Cancer Center, Durham, United States
| | - A C Houweling
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Rodrigues
- Department of Radiation Oncology, Duke Cancer Center, Durham, United States
| | - H M Verkooijen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M E P Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B van Asselen
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J K Horton
- Department of Radiation Oncology, Duke Cancer Center, Durham, United States
| | - H J G D van den Bongard
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Anufrieva KS, Shender VО, Arapidi GP, Pavlyukov MS, Shakhparonov MI, Shnaider PV, Butenko IO, Lagarkova MA, Govorun VM. Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells. Genome Med 2018; 10:49. [PMID: 29950180 PMCID: PMC6020472 DOI: 10.1186/s13073-018-0557-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Abnormal pre-mRNA splicing regulation is common in cancer, but the effects of chemotherapy on this process remain unclear. METHODS To evaluate the effect of chemotherapy on slicing regulation, we performed meta-analyses of previously published transcriptomic, proteomic, phosphoproteomic, and secretome datasets. Our findings were verified by LC-MS/MS, western blotting, immunofluorescence, and FACS analyses of multiple cancer cell lines treated with cisplatin and pladienolide B. RESULTS Our results revealed that different types of chemotherapy lead to similar changes in alternative splicing by inducing intron retention in multiple genes. To determine the mechanism underlying this effect, we analyzed gene expression in 101 cell lines affected by ɣ-irradiation, hypoxia, and 10 various chemotherapeutic drugs. Strikingly, оnly genes involved in the cell cycle and pre-mRNA splicing regulation were changed in a similar manner in all 335 tested samples regardless of stress stimuli. We revealed significant downregulation of gene expression levels in these two pathways, which could be explained by the observed decrease in splicing efficiency and global intron retention. We showed that the levels of active spliceosomal proteins might be further post-translationally decreased by phosphorylation and export into the extracellular space. To further explore these bioinformatics findings, we performed proteomic analysis of cisplatin-treated ovarian cancer cells. Finally, we demonstrated that the splicing inhibitor pladienolide B impairs the cellular response to DNA damage and significantly increases the sensitivity of cancer cells to chemotherapy. CONCLUSIONS Decreased splicing efficiency and global intron retention is a novel stress response mechanism that may promote survival of malignant cells following therapy. We found that this mechanism can be inhibited by pladienolide B, which significantly increases the sensitivity of cancer cells to cisplatin which makes it a good candidate drug for improving the efficiency of cancer therapy.
Collapse
Affiliation(s)
- Ksenia S Anufrieva
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
- Systems Biology Lab, Moscow Institute of Physics and Technology (State University), Moscow, Region, 141701, Russia.
| | - Victoria О Shender
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - Georgij P Arapidi
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Systems Biology Lab, Moscow Institute of Physics and Technology (State University), Moscow, Region, 141701, Russia
| | - Marat S Pavlyukov
- Laboratory of Membrane Bioenergetics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Michail I Shakhparonov
- Laboratory of Membrane Bioenergetics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Polina V Shnaider
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ivan O Butenko
- Laboratory of Proteomic Analysis, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vadim M Govorun
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Proteomic Analysis, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
18
|
Miller MA, Chandra R, Cuccarese MF, Pfirschke C, Engblom C, Stapleton S, Adhikary U, Kohler RH, Mohan JF, Pittet MJ, Weissleder R. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci Transl Med 2018; 9:9/392/eaal0225. [PMID: 28566423 DOI: 10.1126/scitranslmed.aal0225] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/23/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022]
Abstract
Efficient delivery of therapeutic nanoparticles (TNPs) to tumors is critical in improving efficacy, yet strategies that universally maximize tumoral targeting by TNP modification have been difficult to achieve in the clinic. Instead of focusing on TNP optimization, we show that the tumor microenvironment itself can be therapeutically primed to facilitate accumulation of multiple clinically relevant TNPs. Building on the recent finding that tumor-associated macrophages (TAM) can serve as nanoparticle drug depots, we demonstrate that local tumor irradiation substantially increases TAM relative to tumor cells and, thus, TNP delivery. High-resolution intravital imaging reveals that after radiation, TAM primarily accumulate adjacent to microvasculature, elicit dynamic bursts of extravasation, and subsequently enhance drug uptake in neighboring tumor cells. TAM depletion eliminates otherwise beneficial radiation effects on TNP accumulation and efficacy, and controls with unencapsulated drug show that radiation effects are more pronounced with TNPs. Priming with combined radiation and cyclophosphamide enhances vascular bursting and tumoral TNP concentration, in some cases leading to a sixfold increase of TNP accumulation in the tumor, reaching 6% of the injected dose per gram of tissue. Radiation therapy alters tumors for enhanced TNP delivery in a TAM-dependent fashion, and these observations have implications for the design of next-generation tumor-targeted nanomaterials and clinical trials for adjuvant strategies.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Ravi Chandra
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Harvard Radiation Oncology Program, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael F Cuccarese
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Shawn Stapleton
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Utsarga Adhikary
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - James F Mohan
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA. .,Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
19
|
Blocking Interleukin (IL)4- and IL13-Mediated Phosphorylation of STAT6 (Tyr641) Decreases M2 Polarization of Macrophages and Protects Against Macrophage-Mediated Radioresistance of Inflammatory Breast Cancer. Int J Radiat Oncol Biol Phys 2018; 100:1034-1043. [DOI: 10.1016/j.ijrobp.2017.11.043] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023]
|
20
|
Muraki M. Development of expression systems for the production of recombinant human Fas ligand extracellular domain derivatives using <em>Pichia pastoris</em> and preparation of the conjugates by site-specific chemical modifications: A review. AIMS BIOENGINEERING 2018. [DOI: 10.3934/bioeng.2018.1.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Zhang J, Zhou L, Nan Z, Yuan Q, Wen J, Xu M, Li Y, Li B, Wang P, Liu C, Ma Y, Chen S, Xie S. Knockdown of c‑Myc activates Fas-mediated apoptosis and sensitizes A549 cells to radiation. Oncol Rep 2017; 38:2471-2479. [PMID: 28849062 DOI: 10.3892/or.2017.5897] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated that cancer radiosensitivity is associated with the deregulation of c‑Myc, but the relationship between c‑Myc and Fas in radioresistance of lung adenocarcinoma remains unclear. In this study, we established radiation-resistant A549 cell model (A549/R), and investigated the roles of c‑Myc and Fas in radiation-induced cytotoxicity of A549 cells. Apoptosis detection showed that there were fewer apoptotic cells in A549/R cells treated with radiation than in A549 cells. Western blotting results demonstrated the inverse expression pattern of c‑Myc and Fas in A549 and A549/R cells. Suppression of c‑Myc expression by small interfering RNA (siRNA) displayed enhancement of Fas-mediated apoptosis in A549/R cells, accompanying a significant decrease of Bid, Bcl‑2, pro‑caspase‑8, -9 and -3 and increase of Bax. In contrast, Fas-mediated apoptosis was attenuated while Fas expression was suppressed by ectopic expression of c‑Myc in A549 cells. Moreover, decreased cell viability and increased induction of apoptosis were observed in A549/R cells followed by combinational treatment of c‑Myc siRNA and irradiation, whereas, upregulation of c‑Myc reduced the sensitivity of A549 cells to irradiation. These results indicated that c‑Myc and Fas regulated the sensitivity of A549 cells to irradiation by regulating caspase‑8-mediated Bid activation and the subsequent association with the mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Ling Zhou
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhaodi Nan
- Department of Oncology, Affiliated Hospital to Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Qing Yuan
- Department of Oncology, Affiliated Hospital to Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jie Wen
- Department of Oncology, Affiliated Hospital to Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Youjie Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Changmin Liu
- Department of Oncology, Affiliated Hospital to Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Ying Ma
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shaoshui Chen
- Department of Oncology, Affiliated Hospital to Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
22
|
Boral D, Vishnoi M, Liu HN, Yin W, Sprouse ML, Scamardo A, Hong DS, Tan TZ, Thiery JP, Chang JC, Marchetti D. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun 2017; 8:196. [PMID: 28775303 PMCID: PMC5543046 DOI: 10.1038/s41467-017-00196-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
The enumeration of EpCAM-positive circulating tumor cells (CTCs) has allowed estimation of overall metastatic burden in breast cancer patients. However, a thorough understanding of CTCs associated with breast cancer brain metastasis (BCBM) is necessary for early identification and evaluation of treatment response to BCBM. Here we report that BCBM CTCs is enriched in a distinct sub-population of cells identifiable by their biomarker expression and mutational content. Deriving from a comprehensive analysis of CTC transcriptomes, we discovered a unique "circulating tumor cell gene signature" that is distinct from primary breast cancer tissues. Further dissection of the circulating tumor cell gene signature identified signaling pathways associated with BCBM CTCs that may have roles in potentiating BCBM. This study proposes CTC biomarkers and signaling pathways implicated in BCBM that may be used either as a screening tool for brain micro-metastasis detection or for making rational treatment decisions and monitoring therapeutic response in patients with BCBM.Characterization of CTCs derived from breast cancer patients with brain metastasis (BCBM) may allow for early diagnosis of brain metastasis and/or help for treatment choice and its efficacy. In this study, the authors identify a unique signature, based on patient-derived CTCs transcriptomes, for BCBM- CTCs that is different from primary tumors.
Collapse
Affiliation(s)
- Debasish Boral
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Monika Vishnoi
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Haowen N Liu
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Wei Yin
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Marc L Sprouse
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Antonio Scamardo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston,, 77030, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston,, 77030, TX, USA
| | - Tuan Z Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jean P Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jenny C Chang
- Institute for Academic Medicine, Houston Methodist Hospital, Houston,, 77030, TX, USA
| | - Dario Marchetti
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA.
- Institute for Academic Medicine, Houston Methodist Hospital, Houston,, 77030, TX, USA.
| |
Collapse
|
23
|
Lee CT, Zhou Y, Roy-Choudhury K, Siamakpour-Reihani S, Young K, Hoang P, Kirkpatrick JP, Chi JT, Dewhirst MW, Horton JK. Subtype-Specific Radiation Response and Therapeutic Effect of FAS Death Receptor Modulation in Human Breast Cancer. Radiat Res 2017; 188:169-180. [PMID: 28598289 DOI: 10.1667/rr14664.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Breast cancer is the most common malignancy diagnosed among women and represents a heterogeneous group of subtypes. Radiation therapy is a critical component of treatment for breast cancer patients. However, little is known about radiation response among these intrinsic subtypes. In previous studies, we identified a significant induction of FAS after irradiation in biologically favorable breast cancer patients and breast cancer cell lines. Here, we expanded our study and investigated radiation response in a mouse model of breast cancer. MCF7 (luminal), HCC1954 (HER2+) or SUM159 (basal) cells were implanted orthotopically into the dorsal mammary fat pad of nude mice. These mice were then treated with different doses of radiation to assess tumor growth control. We further investigated the therapeutic effect of FAS modulation by silencing FAS in radiation-responsive tumors and injecting FAS agonist antibody into radiation-resistant tumors. Exposure to radiation inhibited MCF7, and to a lesser extent HCC1954 tumor growth in a dose-dependent manner. In contrast, SUM159 tumors were resistant to radiation. The estimated TCD50 values were 19.3 Gy for MCF7 and 44.9 Gy for SUM159. Radiation induced FAS expression in MCF7 tumors, but not SUM159 tumors. We found that silencing of FAS did not negatively impact radiation response in MCF7 tumors, possibly due to compensation by other apoptotic pathways. On the other hand, FAS activating antibody in combination with radiation treatment delayed SUM159 and HCC1954 tumor growth. However, it did not reach statistical significance compared to radiation treatment alone. Our results suggest that there is intrinsic variation in radiation response among breast cancer subtypes. FAS activation concurrent with radiation slows tumor growth in the radiation-resistant subtypes, but the effect was not significant. Alternative subtype-specific modulators of radiation response are under investigation.
Collapse
Affiliation(s)
- Chen-Ting Lee
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Yingchun Zhou
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kingshuk Roy-Choudhury
- b Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | | | - Kenneth Young
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Peter Hoang
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P Kirkpatrick
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jen-Tsan Chi
- c Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina.,d Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Janet K Horton
- Department of a Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
24
|
New Techniques for Irradiating Early Stage Breast Cancer: Stereotactic Partial Breast Irradiation. Semin Radiat Oncol 2017; 27:279-288. [PMID: 28577835 DOI: 10.1016/j.semradonc.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several improvements in breast cancer radiation delivery have been realized using new techniques over the past several decades. As an example, for early stage disease, there has been active investigation of partial breast irradiation (PBI) vs whole breast irradiation. Although still investigational, PBI reduces the treatment volumes, doses to organs at risk, and may improve cosmesis. Over the past 2 decades PBI has been delivered via interstitial brachytherapy, intracavitary brachytherapy, intraoperative radiation therapy, or 3-dimensional external beam radiation therapy. More recently, there has been growing evidence that supports stereotactic body radiation therapy as a safe and effective new treatment for early stage breast cancer. This article describes this new treatment opportunity and reviews the emerging data of stereotactic partial breast irradiation.
Collapse
|
25
|
Hunt NJ, Waters KA, Machaalani R. Promotion of the Unfolding Protein Response in Orexin/Dynorphin Neurons in Sudden Infant Death Syndrome (SIDS): Elevated pPERK and ATF4 Expression. Mol Neurobiol 2016; 54:7171-7185. [PMID: 27796753 DOI: 10.1007/s12035-016-0234-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/16/2016] [Indexed: 01/08/2023]
Abstract
We previously demonstrated that sudden infant death syndrome (SIDS) infants have decreased orexin immunoreactivity within the hypothalamus and pons compared to non-SIDS infants. In this study, we examined multiple mechanisms that may promote loss of orexin expression including programmed cell death, impaired maturation/structural stability, neuroinflammation and impaired unfolding protein response (UPR). Immunofluorescent and immunohistochemical staining for a number of markers was performed in the tuberal hypothalamus and pons of infants (1-10 months) who died from SIDS (n = 27) compared to age- and sex-matched non-SIDS infants (n = 19). The markers included orexin A (OxA), dynorphin (Dyn), cleaved caspase 3 (CC3), cleaved caspase 9 (CC9), glial fibrillary acid protein (GFAP), tubulin beta chain 3 (TUBB3), myelin basic protein (MBP), interleukin 1β (IL-1β), terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL), c-fos and the UPR activation markers: phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (pPERK), and activating transcription factor 4 (ATF4). It was hypothesised that pPERK and ATF4 would be upregulated in Ox neurons in SIDS compared to non-SIDS. Within the hypothalamus, OxA and Dyn co-localised with a 20 % decrease in expression in SIDS infants (P = 0.001). pPERK and ATF4 expression in OxA neurons were increased by 35 % (P = 0.001) and 15 % (P = 0.001) respectively, with linear relationships between the decreased OxA/Dyn expression and the percentages of co-localised pPERK/OxA and ATF4/OxA evident (P = 0.01, P = 0.01). No differences in co-localisation with CC9, CC3, TUNEL or c-fos, nor expression of MBP, TUBB3, IL-1β and GFAP, were observed in the hypothalamus. In the pons, there were 40 % and 20 % increases in pPERK expression in the locus coeruleus (P = 0.001) and dorsal raphe (P = 0.022) respectively; ATF4 expression was not changed. The findings that decreased orexin levels in SIDS infants may be associated with an accumulation of pPERK suggest decreased orexin translation. As pPERK may inhibit multiple neuronal groups in the pons in SIDS infants, it could also indicate that a common pathway promotes loss of protein expression and impaired functionality of multiple brainstem neuronal groups.
Collapse
Affiliation(s)
- Nicholas J Hunt
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia.,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia
| | - Karen A Waters
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia.,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia.,The Children's Hospital, Westmead, NSW, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia. .,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia. .,The Children's Hospital, Westmead, NSW, Australia.
| |
Collapse
|