1
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Giovanetti A, Tortolici F, Rufini S. Why Do the Cosmic Rays Induce Aging? Front Physiol 2020; 11:955. [PMID: 32903447 PMCID: PMC7434975 DOI: 10.3389/fphys.2020.00955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing duration of space missions involves a progressively higher exposure of astronauts to cosmic rays, whose most hazardous component is made up of High-Atomic number and High-Energy (HZE) ions. HZE ions interact along their tracks with biological molecules inducing changes on living material qualitatively different from that observed after irradiation for therapeutic purposes or following nuclear accidents. HZE ions trigger in cells different responses initialized by DNA damage and mitochondria dysregulation, which cause a prolonged state of sterile inflammation in the tissues. These cellular phenomena may explain why spending time in space was found to cause the onset of a series of diseases normally related to aging. These changes that mimic aging but take place more quickly make space flights also an opportunity to study the mechanisms underlying aging. In this short review, we describe the biological mechanisms underlying cell senescence and aging; the peculiar characteristics of HZE ions, their interaction with living matter and the effects on the organism; the key role of mitochondria in HZE ion-induced health effects and aging-related phenomena.
Collapse
Affiliation(s)
- Anna Giovanetti
- ENEA, Department of Energy and Sustainable Economic, Rome, Italy
| | - Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Rufini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Suman S, Kumar S, Fornace AJ, Datta K. The effect of carbon irradiation is associated with greater oxidative stress in mouse intestine and colon relative to γ-rays. Free Radic Res 2018; 52:556-567. [PMID: 29544379 DOI: 10.1080/10715762.2018.1452204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon irradiation due to its higher biological effectiveness relative to photon radiation is a concern for toxicity to proliferative normal gastrointestinal (GI) tissue after radiotherapy and long-duration space missions such as mission to Mars. Although radiation-induced oxidative stress is linked to chronic diseases such as cancer, effects of carbon irradiation on normal GI tissue have not been fully understood. This study assessed and compared chronic oxidative stress in mouse intestine and colon after different doses of carbon and γ radiation, which are qualitatively different. Mice (C57BL/6J) were exposed to 0.5 or 1.3 Gy of γ or carbon irradiation, and intestinal and colonic tissues were collected 2 months after irradiation. While part of the tissues was used for isolating epithelial cells, tissue samples were also fixed and paraffin embedded for 4 µm thick sections as well as frozen for biochemical assays. In isolated epithelial cells, reactive oxygen species and mitochondrial status were studied using fluorescent probes and flow cytometry. We assessed antioxidant enzymes and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in tissues and formalin-fixed tissue sections were stained for 4-hydroxynonenal, a lipid peroxidation marker. Data show that mitochondrial deregulation, increased NADPH oxidase activity, and decreased antioxidant activity were major contributors to carbon radiation-induced oxidative stress in mouse intestinal and colonic cells. When considered along with higher lipid peroxidation after carbon irradiation relative to γ-rays, our data have implications for functional changes in intestine and carcinogenesis in colon after carbon radiotherapy as well as space travel.
Collapse
Affiliation(s)
- Shubhankar Suman
- a Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center , Georgetown University , Washington , DC , USA
| | - Santosh Kumar
- a Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center , Georgetown University , Washington , DC , USA
| | - Albert J Fornace
- a Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center , Georgetown University , Washington , DC , USA
| | - Kamal Datta
- a Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center , Georgetown University , Washington , DC , USA
| |
Collapse
|
4
|
Exposure to galactic cosmic radiation compromises DNA repair and increases the potential for oncogenic chromosomal rearrangement in bronchial epithelial cells. Sci Rep 2018; 8:11038. [PMID: 30038404 PMCID: PMC6056477 DOI: 10.1038/s41598-018-29350-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
Participants in deep space missions face protracted exposure to galactic cosmic radiation (GCR). In this setting, lung cancer is a significant component of the overall risk of radiation-exposure induced death. Here we investigate persistent effects of GCR exposure on DNA repair capacity in lung-derived epithelial cells, using an enzyme-stimulated chromosomal rearrangement as an endpoint. Replicate cell cultures were irradiated with energetic 48Ti ions (a GCR component) or reference γ-rays. After a six-day recovery, they were challenged by expression of a Cas9/sgRNA pair that creates double-strand breaks simultaneously in the EML4 and ALK loci, misjoining of which creates an EML4-ALK fusion oncogene. Misjoining was significantly elevated in 48Ti-irradiated populations, relative to the baseline rate in mock-irradiated controls. The effect was not seen in γ-ray irradiated populations exposed to equal or higher radiation doses. Sequence analysis of the EML4-ALK joints from 48Ti-irradiated cultures showed that they were far more likely to contain deletions, sometimes flanked by short microhomologies, than equivalent samples from mock-irradiated cultures, consistent with a shift toward error-prone alternative nonhomologous end joining repair. Results suggest a potential mechanism by which a persistent physiological effect of GCR exposure may increase lung cancer risk.
Collapse
|
5
|
Jella KK, Moriarty R, McClean B, Byrne HJ, Lyng FM. Reactive oxygen species and nitric oxide signaling in bystander cells. PLoS One 2018; 13:e0195371. [PMID: 29621312 PMCID: PMC5886541 DOI: 10.1371/journal.pone.0195371] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell conditioned media.
Collapse
Affiliation(s)
- Kishore Kumar Jella
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Roisin Moriarty
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | | | - Hugh J. Byrne
- Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Fiona M. Lyng
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
6
|
Matuo Y, Izumi Y, Furusawa Y, Shimizu K. Biological effects of carbon ion beams with various LETs on budding yeast Saccharomyces cerevisiae. Mutat Res 2017; 810:45-51. [PMID: 29146154 DOI: 10.1016/j.mrfmmm.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023]
Abstract
It has been established that irradiation with higher linear energy transfer (LET) increases lethality and mutagenicity more than that with lower LET. However, the characteristics specific to carbon ion beam have not yet been elucidated. Yeast cells were irradiated with carbon ions with an LET of 13 or 50keV/μm, and cell survival and mutation frequency were analyzed. The results, combined with our previous findings for ions with an LET of 107keV/μm, demonstrated that, in conjunction with an increase in LET, cell survival decreased, while mutation frequency increased. This indicates that a carbon ion beam with a higher LET is more mutagenic than one with a lower LET.
Collapse
Affiliation(s)
- Youichirou Matuo
- Research Institute of Nuclear Engineering, University of Fukui, Tsuruga, Fukui, 914-0055, Japan
| | - Yoshinobu Izumi
- Research Institute of Nuclear Engineering, University of Fukui, Tsuruga, Fukui, 914-0055, Japan
| | - Yoshiya Furusawa
- National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Kikuo Shimizu
- Radioisotope Research Center, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
7
|
Giorgi G, Pirazzini C, Bacalini MG, Giuliani C, Garagnani P, Capri M, Bersani F, Del Re B. Assessing the combined effect of extremely low-frequency magnetic field exposure and oxidative stress on LINE-1 promoter methylation in human neural cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:193-200. [PMID: 28258386 DOI: 10.1007/s00411-017-0683-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Extremely low frequency magnetic fields (ELF-MF) have been classified as "possibly carcinogenic", but their genotoxic effects are still unclear. Recent findings indicate that epigenetic mechanisms contribute to the genome dysfunction and it is well known that they are affected by environmental factors. To our knowledge, to date the question of whether exposure to ELF-MF can influence epigenetic modifications has been poorly addressed. In this paper, we investigated whether exposure to ELF-MF alone and in combination with oxidative stress (OS) can affect DNA methylation, which is one of the most often studied epigenetic modification. To this end, we analyzed the DNA methylation levels of the 5'untranslated region (5'UTR) of long interspersed nuclear element-1s (LINE-1 or L1), which are commonly used to evaluate the global genome methylation level. Human neural cells (BE(2)C) were exposed for 24 and 48 h to extremely low frequency pulsed magnetic field (PMF; 50 Hz, 1 mT) in combination with OS. The methylation levels of CpGs located in L1 5'UTR region were measured by MassARRAY EpiTYPER. The results indicate that exposures to the single agents PMF and OS induced weak decreases and increases of DNA methylation levels at different CpGs. However, the combined exposure to PMF and OS lead to significant decrease of DNA methylation levels at different CpG sites. Most of the changes were transient, suggesting that cells can restore homeostatic DNA methylation patterns. The results are discussed and future research directions outlined.
Collapse
Affiliation(s)
- Gianfranco Giorgi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
| | - Cristina Giuliani
- Department of Biological, Geological and Environmental Sciences (BiGeA), Centre for Genome Biology, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
- CIG-Interdepartmental Centre "L. Galvani" for Bioinformatics, Biophysics and Biocomplexity, Piazza di Porta San Donato 1, 40126, Bologna, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via S. Giacomo 12, 40126, Bologna, Italy
- CIG-Interdepartmental Centre "L. Galvani" for Bioinformatics, Biophysics and Biocomplexity, Piazza di Porta San Donato 1, 40126, Bologna, Italy
| | - Ferdinando Bersani
- DIFA Department of Physics and Astronomy, University of Bologna, via Berti Pichat 6/2, 40127, Bologna, Italy
| | - Brunella Del Re
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
8
|
Halimi M, Shahabi A, Moslemi D, Parsian H, Asghari SM, Sariri R, Yeganeh F, Zabihi E. Human serum miR-34a as an indicator of exposure to ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:423-429. [PMID: 27561942 DOI: 10.1007/s00411-016-0661-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Radiation exposure in industrial accidents or nuclear device attacks is a major public health concern. There is an urgent need for markers that rapidly identify people exposed to ionizing radiation (IR). Finding a blood-based marker is advantageous because of the ease of sample collection. This study was designed to test the hypothesis that serum miR-34a could serve as an indicator of exposure to IR. Therefore, 44 women with breast cancer, where radiotherapy was part of their therapeutic protocol, were investigated in this study. After demonstrating the appropriateness of our microRNA (miRNA) extraction efficiency and miRNA assay in human serum, we analyzed the miR-34a level in paired serum samples before and after radiotherapy. Fifty Gy X-ray irradiation in daily dose fractions of 2 Gy, 5 days per week, was used in this study. We demonstrated that IR significantly increased serum level of miR-34a. By measuring miR-34a in serum, we could distinguish irradiated patients with sensitivity of 65 % and specificity of 75 %. According to this study, serum miR-34a has the potential to be used as an indicator of radiation exposure.
Collapse
Affiliation(s)
- Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
- Young Researchers and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ahmad Shahabi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
- Young Researchers and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Dariush Moslemi
- Department of Radiation Oncology, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and molecular biology research center, Health research institute, Babol University of Medical Sciences, Babol, Iran.
- Clinical biochemistry department, Babol University of Medical Sciences, Babol, Iran.
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farshid Yeganeh
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Zabihi
- Cellular and molecular biology research center, Health research institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Vijayan M, Chinniah R, Ravi PM, Sivanadham R, Mosses Joseph AK, Vellaiappan NA, Krishnan JI, Karuppiah B. MTHFR (C677T) CT genotype and CT-apoE3/3 genotypic combination predisposes the risk of ischemic stroke. Gene 2016; 591:465-70. [PMID: 27378745 DOI: 10.1016/j.gene.2016.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 11/16/2022]
Abstract
The predisposition to ischemic stroke (IS) might involve interactions of several genes and environmental factors. The present study was aimed to evaluate the influence of polymorphisms in methylenetetrahydrofolate reductase (MTHFR-C677T) and apolipoprotein-E (apo-E) as risk factors for IS patients in south Indian population. 200 IS patients and 193 age and sex matched controls were genotyped for MTHFR-C677T and apoE by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method. Statistically significant association was observed for MTHFR CT genotype (IS-Pooled: OR=4.29; p=5.01×10(-5); IS-Males: OR=4.13; p=0.001; IS-Females: OR=8.62; p=0.027; IS-Large Vessel Disease (LVD)- Pooled: OR=4.14; p=0.0002) and T allele (IS-Pooled: OR=4.82; p=1.49×10(-5); IS-Males: OR=4.33; p=0.0002; IS-Females: OR=7.99; p=0.031; IS-LVD-Pooled: OR=4.13; p=0.0001). Further, reduced frequencies of CC genotype (IS-Pooled: OR=0.20; p=9.80×10(-6); IS-Males: OR=0.25; p=0.001; IS-Females: OR=0.12; p=0.027; IS-LVD-Pooled: OR=0.23; p=0.0001) and C allele (IS-Pooled: OR=0.21; p=1.49×10(-5); IS-Males: OR=0.23; p=0.0002; IS-Females: OR=0.13; p=0.031; IS-LVD-Pooled: OR=0.24; p=0.0001) were observed in IS patients than the controls. No association was observed for apoE genotypes/alleles in IS/LVD cases. Our study demonstrated the presence of risk for MTHFR CT genotype/T allele and 'CT-3/3' (n=33 vs. 5; OR=7.42; p=0.001) genotypic combination in the development of IS in south India. Further, follow-up study of these stroke cases i.e., in later stages of the disease whether they are developing the neurological disorders such as Alzheimer's Disease (AD) and vascular dementia (VaD) is needed to draw a fruitful conclusion in connection between neurological disorders and with these two polymorphisms, before translating it into clinical practice.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Biotechnology & Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India; Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Rathika Chinniah
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Padma Malini Ravi
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Ramgopal Sivanadham
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | | | | | | | - Balakrishnan Karuppiah
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India.
| |
Collapse
|
10
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|