1
|
Senwitz C, Vogel M, Drobot B, Stumpf T, Heller A. Impact of DTPA and 3,4,3-LI(1,2-HOPO) on Eu III interactions with renal cells in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178736. [PMID: 39923481 DOI: 10.1016/j.scitotenv.2025.178736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
This study represents a first comprehensive investigation on how the decorporation agents CaNa3-DTPA (DTPA) and 3,4,3-LI(1,2-HOPO) (LIHOPO) affect EuIII interactions with human and rat kidney cells in vitro. Cell biological investigations were complemented with physicochemical measurements to correlate cytotoxic impairments with intracellular metal uptake and EuIII speciation. Upon exposure to sole DTPA or LIHOPO, cell viability and morphology are affected in a time- and concentration-dependent manner. For both decorporation agents, detailed EC50 values for renal cells in vitro are reported. Simultaneous application of EuIII + DTPA in the medium leads to formation of the soluble and largely cell impermeable EuDTPA2- complex. At ligand excess, this significantly reduces intracellular EuIII uptake. However, EuDTPA2- was spectroscopically detected also inside cells indicating that small fractions of this complex are able to pass the plasma membrane. When EuIII + LIHOPO is applied to the medium, the soluble EuLIHOPO- complex is formed. In contrast to DTPA, this drastically enhances intracellular EuIII uptake even at ligand deficit demonstrating that EuLIHOPO- is highly cell permeable. Concomitantly, this complex was spectroscopically detected inside cells confirming its plasma membrane passage and intracellular stability. Nevertheless, due to stable EuIII binding, the cell viability is not influenced by the increased intracellular EuIII content. In fact, the applied ligand concentration is much more critical in this regard, emphasizing the need for cytotoxic investigations. Our results improve the knowledge of the cellular interactions of lanthanides ± decorporation agents and demonstrate the combination of in vitro cell culture and spectroscopy being a sophisticated toolbox for this.
Collapse
Affiliation(s)
- Christian Senwitz
- Technische Universität Dresden, Faculty of Chemistry, Institute of Analytical Chemistry, Professorship of Radiochemistry/Radioecology, 01062 Dresden, Germany; Technische Universität Dresden, Radiation Protection, Central Radionuclide Laboratory, 01062 Dresden, Germany
| | - Manja Vogel
- VKTA - Radiation Protection, Analytics & Disposal Rossendorf e.V., 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Technische Universität Dresden, Faculty of Chemistry, Institute of Analytical Chemistry, Professorship of Radiochemistry/Radioecology, 01062 Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Anne Heller
- Technische Universität Dresden, Faculty of Chemistry, Institute of Analytical Chemistry, Professorship of Radiochemistry/Radioecology, 01062 Dresden, Germany; Technische Universität Dresden, Radiation Protection, Central Radionuclide Laboratory, 01062 Dresden, Germany.
| |
Collapse
|
2
|
Dumit S, Miller G, Grémy O, Poudel D, Bertelli L, Klumpp JA. Chelation Modeling of a Plutonium-238 Inhalation Incident Treated with Delayed DTPA. Radiat Res 2023; 200:577-586. [PMID: 37956868 DOI: 10.1667/rade-23-00135.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023]
Abstract
This work describes an analysis, using a previously established chelation model, of the bioassay data collected from a worker who received delayed chelation therapy following a plutonium-238 inhalation. The details of the case have already been described in two publications. The individual was treated with Ca-DTPA via multiple intravenous injections and then nebulizations beginning several months after the intake and continuing for four years. The exact date and circumstances of the intake are unknown. However, interviews with the worker suggested that the intake occurred via inhalation of a soluble plutonium compound. The worker provided daily urine and fecal bioassay samples throughout the chelation treatment protocol, including samples collected before, during, and after the administration of Ca-DTPA. Unlike the previous two publications presenting this case, the current analysis explicitly models the combined biokinetics of the plutonium-DTPA chelate. Using the previously established chelation model, it was possible to fit the data through optimizing only the intake (day and magnitude), solubility, and absorbed fraction of nebulized Ca-DTPA. This work supports the hypothesis that the efficacy of the delayed chelation treatment observed in this case results mainly from chelation of cell-internalized plutonium by Ca-DTPA (intracellular chelation). It also demonstrates the validity of the previously established chelation model. As the bioassay data were modified to ensure data anonymization, the calculation of the "true" committed effective dose was not possible. However, the treatment-induced dose inhibition (in percentage) was calculated.
Collapse
Affiliation(s)
- Sara Dumit
- Los Alamos National Laboratory (LANL), Radiation Protection Division, Los Alamos, New Mexico 87545
| | - Guthrie Miller
- Unaffiliated (retired from Los Alamos National Laboratory), Santa Fe, New Mexico
| | - Olivier Grémy
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Deepesh Poudel
- Los Alamos National Laboratory (LANL), Radiation Protection Division, Los Alamos, New Mexico 87545
| | | | - John A Klumpp
- Los Alamos National Laboratory (LANL), Radiation Protection Division, Los Alamos, New Mexico 87545
| |
Collapse
|
3
|
Kastl M, Grémy O, Lamart S, Giussani A, Li WB, Hoeschen C. Modelling DTPA therapy following Am contamination in rats. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:483-495. [PMID: 37831188 PMCID: PMC10628027 DOI: 10.1007/s00411-023-01046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
A major challenge in modelling the decorporation of actinides (An), such as americium (Am), with DTPA (diethylenetriaminepentaacetic acid) is the fact that standard biokinetic models become inadequate for assessing radionuclide intake and estimating the resulting dose, as DTPA perturbs the regular biokinetics of the radionuclide. At present, most attempts existing in the literature are empirical and developed mainly for the interpretation of one or a limited number of specific incorporation cases. Recently, several approaches have been presented with the aim of developing a generic model, one of which reported the unperturbed biokinetics of plutonium (Pu), the chelation process and the behaviour of the chelated compound An-DTPA with a single model structure. The aim of the approach described in this present work is the development of a generic model that is able to describe the biokinetics of Am, DTPA and the chelate Am-DTPA simultaneously. Since accidental intakes in humans present many unknowns and large uncertainties, data from controlled studies in animals were used. In these studies, different amounts of DTPA were administered at different times after contamination with known quantities of Am. To account for the enhancement of faecal excretion and reduction in liver retention, DTPA is assumed to chelate Am not only in extracellular fluids, but also in hepatocytes. A good agreement was found between the predictions of the proposed model and the experimental results for urinary and faecal excretion and accumulation and retention in the liver. However, the decorporation from the skeletal compartment could not be reproduced satisfactorily under these simple assumptions.
Collapse
Affiliation(s)
- Manuel Kastl
- Institute of Radiation Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Olivier Grémy
- Laboratoire de Radio Toxicologie, CEA, Université de Paris-Saclay, Arpajon, France
| | - Stephanie Lamart
- Laboratoire de Radio Toxicologie, CEA, Université de Paris-Saclay, Arpajon, France
- Laboratoire d'Evaluation de la Dose Interne, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LEDI, Fontenay-aux-Roses, France
| | - Augusto Giussani
- Division of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleißheim, Germany
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Division of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleißheim, Germany
| | - Christoph Hoeschen
- Institut für Medizintechnik, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Grémy O, Devilliers K, Miccoli L. Chelation therapy with 3,4,3-Li(1,2-HOPO) after pulmonary exposure to plutonium in rats. Chem Biol Interact 2023; 378:110488. [PMID: 37054935 DOI: 10.1016/j.cbi.2023.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Internal exposure to plutonium can occur through inhalation for the nuclear worker, but also for the public if the radionuclide was released into the atmosphere in the context of a nuclear accident or terrorist attack. DieThylenetriaminePentaAcetic acid (DTPA) is currently still the only authorized chelator that can be used to decorporate internalized plutonium. The Linear HydrOxyPyridinOne-based ligand named 3,4,3-Li(1,2-HOPO) remains the most promising drug candidate to replace it in the hopes of improving chelating treatment. This study aimed to assess the efficacy of 3,4,3-Li(1,2-HOPO) in removing plutonium from rats exposed to the lungs, depending on the timing and route of treatment, and almost always compared to DTPA at a ten-fold higher dose used as a reference chelator. First, early intravenous injection or inhalation of 3,4,3-Li(1,2-HOPO) demonstrated superior efficacy over DTPA in preventing plutonium accumulation in liver and bone in rats exposed by injection or lung intubation. However, this superiority of 3,4,3-Li(1,2-HOPO) was much less pronounced with delayed treatment. In rats given plutonium in the lungs, the experiments also showed that 3,4,3-Li-HOPO reduced pulmonary retention of plutonium more effectively than DTPA only when the chelators were injected early but not at delayed times, while it was always the better of the two chelators when they were inhaled. Under our experimental conditions, the rapid oral administration of 3,4,3-Li(1,2-HOPO) was successful in preventing systemic accumulation of plutonium, but not in decreasing lung retention. Thus, after exposure to plutonium by inhalation, the best emergency treatment would be the rapid inhalation of a 3,4,3-Li(1,2-HOPO) aerosol to limit pulmonary retention of plutonium and prevent extrapulmonary deposition of plutonium in target systemic tissues.
Collapse
Affiliation(s)
- Olivier Grémy
- Laboratoire de RadioToxicologie, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Saclay, Bruyères-le-Châtel, France.
| | - Karine Devilliers
- Laboratoire de RadioToxicologie, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Saclay, Bruyères-le-Châtel, France
| | - Laurent Miccoli
- Laboratoire de RadioToxicologie, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Saclay, Bruyères-le-Châtel, France
| |
Collapse
|
5
|
Lu Y, Xiao Y, Liu LF, Xiao XL, Liao LF, Nie CM. Theoretical probing into complexation of Si-5LIO-1-Cm-3,2-HOPO with Uranyl. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Van der Meeren A, Berthomieu C, Moureau A, Defrance M, Griffiths NM. Use of an Acellular Assay to Study Interactions between Actinides and Biological or Synthetic Ligands. Biomolecules 2022; 12:1553. [PMID: 36358903 PMCID: PMC9687942 DOI: 10.3390/biom12111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2024] Open
Abstract
Speciation of actinides, and more particularly bioligand-binding ability, influences in vivo behavior. Understanding these interactions is essential for estimation of radiological dose and improvement of decorporation strategies for accidentally contaminated victims. Because the handling of actinides imposes overwhelming difficulties, in vitro assays carried out in physiological conditions are lacking and data regarding such interactions are scarce. In this study, we used a bi-compartmental and dynamic assay, providing physiological conditions (presence of inorganic ions, pH, temperature) to explore interactions between the actinides plutonium (Pu) and americium (Am) and endogenous (proteins transferrin and ferritin) or exogenous ligands (the chelating agent diethylenetriaminpentaacetic acid, DTPA). In this assay, an agarose gel represents the retention compartment of actinides and a dynamic fluid phase, the transfer compartment. The proportion of actinides transferred from static to dynamic phase reflects interactions between Pu/Am and various ligands. The results show differences in the formation of actinide-protein or actinide-DTPA complexes in physiologically relevant media depending on which ligand is present and where. We observed differential behavior for Pu and Am similar to in vivo studies. Thus, our assay may be used to determine the ability of various actinides to interact with specific proteins or with drug candidates for decorporation in complex physiologically relevant environments.
Collapse
Affiliation(s)
- Anne Van der Meeren
- Laboratory of Radio Toxicology, Commissariat à l’énergie atomique et aux energies alternatives (CEA), Paris-Saclay University, 91297 Arpajon, France
| | - Catherine Berthomieu
- Protein-Metal Interactions Laboratory, Commissariat à l’énergie Atomique et aux Energies Alternatives (CEA), Aix Marseille University, Centre National de Recherche Scientifique (CNRS), 13108 Saint Paul-Lez-Durance, France
| | - Agnès Moureau
- Laboratory of Radio Toxicology, Commissariat à l’énergie atomique et aux energies alternatives (CEA), Paris-Saclay University, 91297 Arpajon, France
| | - Martine Defrance
- Laboratory of Radio Toxicology, Commissariat à l’énergie atomique et aux energies alternatives (CEA), Paris-Saclay University, 91297 Arpajon, France
| | - Nina M. Griffiths
- Laboratory of Radio Toxicology, Commissariat à l’énergie atomique et aux energies alternatives (CEA), Paris-Saclay University, 91297 Arpajon, France
| |
Collapse
|
7
|
Grémy O, Blanchin N, Miccoli L. Excretion of Pu-238 during Long-term Chelation Therapy by Repeated DTPA Inhalation. HEALTH PHYSICS 2022; 123:197-207. [PMID: 35613373 DOI: 10.1097/hp.0000000000001584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
ABSTRACT An individual underwent an extensive diethylenetriaminepentaacetate (DTPA) chelation therapy that started several months after plutonium incorporation, most likely by inhalation of a soluble compound. After receiving multiple intravenous infusions of DTPA, the patient continued the treatment by pulmonary delivery of aerosolized DTPA. The purpose of the present work is to provide and discuss the bioassay data obtained during the DTPA aerosol therapy and compare them with those under the DTPA infusion therapy that have been largely interpreted elsewhere. As with DTPA given intravenously, each delayed DTPA inhalation increased the clearance of plutonium not only in urine but also in feces, thus demonstrating the ability to remove plutonium retained by extrapulmonary tissues. Also, the slow decline of increased plutonium urinary elimination together with enhanced fecal excretion are two features coherent with the contribution of intracellular chelation to overall decorporation. The therapeutic benefit of DTPA inhalation appeared lower than with DTPA infusion, most likely due to a lower amount of DTPA reaching the systemic compartments where plutonium chelation predominates. The results suggest that DTPA administration through aerosol could be an alternative to the invasive procedure using a needle, i.e., intravenous injection/infusion, when protracted decorporation therapy is needed following transuranic internalization. Indeed, the patient may be more inclined to undergo a chelation treatment for a longer period because taking DTPA by inhalation may make it less cumbersome and painful.
Collapse
Affiliation(s)
- Olivier Grémy
- CEA, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nicolas Blanchin
- CEA, Service de Santé au Travail, Saint-Paul-Lez-Durance, France
| | - Laurent Miccoli
- CEA, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
8
|
Lai EPC, Li C. Actinide Decorporation: A Review on Chelation Chemistry and Nanocarriers for Pulmonary Administration. Radiat Res 2022; 198:430-443. [PMID: 35943882 DOI: 10.1667/rade-21-00004.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Chelation is considered the best method for detoxification by promoting excretion of actinides (Am, Np, Pu, Th, U) from the human body after internal contamination. Chemical agents that possess carboxylic acid or hydroxypyridinonate groups play a vital role in actinide decorporation. In this review article, we provide considerable background details on the chelation chemistry of actinides with an aim to formulate better decorporation agents. Nanocarriers for pulmonary delivery represent an exciting prospect in the development of novel therapies for actinide decorporation that both reduce toxic side effects of the agent and improve its retention in the body. Recent studies have demonstrated the benefits of using a nebulizer or an inhaler to administer chelating agents for the decorporation of actinides. Effective chelation therapy with large groups of internally contaminated people can be a challenge unless both the agent and the nanocarrier are readily available from strategic national stockpiles for radiological or nuclear emergencies. Sunflower lecithin is particularly adept at alleviating the burden of administration when used to form liposomes as a nanocarrier for pulmonary delivery of diethylenetriamine-pentaacetic acid (DTPA) or hydroxypyridinone (HOPO). Better physiologically-based pharmacokinetic models must be developed for each agent in order to minimize the frequency of multiple doses that can overload the emergency response operations.
Collapse
Affiliation(s)
- Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
9
|
Alshehri S, Fan W, Zhang W, Garrison JC. In Vitro and In Vivo Evaluation of DTPA-HPMA Copolymers as Potential Decorporating Agents for Prophylactic Therapy of Actinide Contamination. Radiat Res 2022; 198:357-367. [PMID: 35913891 DOI: 10.1667/rade-21-00244.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
The release of actinides into the environment represents a significant potential public health concern. Chelation therapy utilizing diethylenetriamine pentaacetate (DTPA) is a U.S. Food and Drug Administration (FDA)-approved therapy capable of mitigating the deposition of some absorbed actinides in the body. However, the pharmacokinetic profile of DTPA is not ideal for prophylactic applications. In this study, we examine the incorporation of DTPA into a HPMA copolymer (P-DTPA) to investigate if the enhanced blood circulation time can offer superior prophylactic protection and of improving in vivo radiometal decorporation. Utilizing lutetium-177 (177Lu) as an actinide model, the performance of P-DTPA and DTPA (control) were evaluated using selectivity studies in the presence of competing biological metals, chelation and stability assays in human serum and cytotoxicity studies using human umbilical vein endothelial cells (HUVEC). The in vivo decorporation efficiency of P-DTPA relative to DTPA and untreated controls was also evaluated over two weeks in CF-1 mice. In the experimental groups, the mice were prophylactically treated with P-DTPA or DTPA (30 μmol/kg) 6 or 24 h prior to 177LuCl3 administration. The in vitro results reveal that P-DTPA gives efficient complexation yields relative to DTPA with a tolerable cytotoxicity profile and good serum stability. The in vivo decorporation studies demonstrated enhanced total excretion of the 177Lu using P-DTPA compared to DTPA in both the 6 and 24 h prophylactic treatment study arms. This enhanced decorporation effect is certainly attributable to the expected prolonged biological half-life of DTPA when grafted to the HPMA polymer.
Collapse
Affiliation(s)
- Sameer Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198.,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Wei Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198.,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198.,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198.,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, Nebraska 68198.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
10
|
Ferrie L, Arrambide C, Darcos V, Prelot B, Monge S. Synthesis and evaluation of functional carboxylic acid based poly(εCL-st-αCOOHεCL)-b-PEG-b-poly(εCL-st-αCOOHεCL) copolymers for neodymium and cerium complexation. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Sokolova AB, Suslova KG, Miller SC. URINARY EXCRETION OF PLUTONIUM IN MAYAK WORKERS DURING AND AFTER CA-DTPA ADMINISTRATION. RADIATION PROTECTION DOSIMETRY 2021; 197:154-162. [PMID: 34953463 DOI: 10.1093/rpd/ncab176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Chelation therapy is sometimes used after potential exposures to plutonium to increase urinary excretion of the radionuclide to improve the accuracy of bioassay measurements. The purpose of this report is to describe the enhancement of urinary excretion of plutonium during and after the administration of the trisodium salt of calcium diethylenetriaminepentaacetate (Ca-DTPA) daily for 3 d to a group of male and female plutonium workers from the Mayak Production Association in Ozyorsk, Russia. One-hundred and two cases (18 females and 84 males) were selected where urinary contents of plutonium, prior to chelation, exceeded the detection threshold. Daily urine collections were obtained during the 3 d of Ca-DTPA treatments. In addition, 58 of these cases had urine bioassays at 1-45 d after chelation. The daily enhancement over baseline values excretion of plutonium was found to be 50.4×/1.4 (geometric mean and geometric standard deviation); 58.9×/1.2; 72.9×/1.4 in the first, second and third days of Ca-DTPA administration. The mean enhancement for the 3-d period was 60.1×/1.7. The rate of plutonium excretion from 1 to 45 d after chelation decreased with a half-period of 3.9 d and the chelation enhancement factor (Кenh-i) is described by the function Кenh-i = (0.79 ± 0.24) + (42.9 ± 1.2) × e-(0.18 ± 0.01) × day.
Collapse
|
12
|
In vitro evidence of the influence of complexation of Pu and Am on uptake by human lung epithelial cells Calu-3. Toxicol In Vitro 2021; 79:105279. [PMID: 34843884 DOI: 10.1016/j.tiv.2021.105279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023]
Abstract
Understanding the mechanisms involved in retention and clearance of actinides from the lungs after accidental intake is essential for the evaluation of the associated radiological risks. Although the absorption of radioelements has been shown in vivo to depend on their nature and physico-chemical properties, their mechanisms of translocation remain unknown. In this study, we have evaluated in vitro the binding and uptake by bronchial epithelial cells Calu-3 of 2 transuranic actinides, plutonium (Pu) and americium (Am), as the first steps of translocation across the pulmonary barrier. For this purpose, Calu-3 cells grown to confluence in 24-well plates were exposed to the radioelements for 24 h under various culture conditions. Two compartments were identified for the association of actinides to cells, corresponding to the membrane bound and internalized fractions. Binding of Pu was slightly higher than of Am, and depended on its initial chemical form (nitrate, citrate, colloids). Uptake of Pu and Am nitrate was higher in serum-free conditions than in supplemented medium, with an active mechanism involved in Pu internalization. Overall, our results suggest that complexation of actinides to bioligands may have an influence on their uptake by pulmonary epithelial cells, and therefore possibly on their subsequent absorption into blood.
Collapse
|
13
|
Grémy O, Blanchin N, Miccoli L. Interpretation of Enhanced Fecal and Urinary Plutonium Excretion Data under a 2-y Regular DTPA Treatment Started Months after Intake. HEALTH PHYSICS 2021; 121:494-505. [PMID: 34591820 PMCID: PMC8505154 DOI: 10.1097/hp.0000000000001458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT In a worker who had internalized plutonium, most likely through inhalation of a somewhat soluble compound, an extensive diethylenetriaminepentaacetate (DTPA) treatment regimen was initiated several months after contamination. Numerous radiotoxicological analyses were performed in both fecal and urinary specimens collected, sometimes for three consecutive days after DTPA administration. Activity measurements showed the continued effectiveness of DTPA intravenous infusions in removing plutonium from tissues of retention even if the treatment regimen started very belatedly after contamination. In the present case, the activity excreted through urine within the first 24-h after a DTPA infusion contributed only about half of that activity excreted within the first three days (i.e., the cumulative activity of the first three 24-h urine collections). In addition, the careful study of the data revealed that DTPA-induced excretion of plutonium via fecal pathway significantly contributed to the overall decorporation. The intracellular chelation of plutonium may be responsible for this enhanced excretion of activity in feces as well as for the delayed and sustained increased clearance of activity in urine. The authors would suggest that the occupational physicians offer to individuals who internalized moderately soluble or soluble plutonium compounds undergo a long-term DTPA treatment, especially when it is not initiated promptly after intake. Under this scenario, measurements of plutonium in successive urine and fecal collections after treatment should be required to get a better estimate of the therapeutic benefit. Also, intracellular chelation and fecal route should be taken into account for better interpretation of radiotoxicological data and modeling of plutonium kinetics under delayed DTPA treatment.
Collapse
Affiliation(s)
- Olivier Grémy
- CEA, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nicolas Blanchin
- CEA, Service de Santé au Travail, Saint-Paul-Lez-Durance, France
| | - Laurent Miccoli
- CEA, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
14
|
Lamart S, Van der Meeren A, Coudert S, Baglan N, Griffiths NM. DTPA Treatment of Wound Contamination in Rats with Americium: Evaluation of Urinary Profiles Using STATBIODIS Shows Importance of Prompt Administration. HEALTH PHYSICS 2021; 120:600-617. [PMID: 33577223 DOI: 10.1097/hp.0000000000001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
ABSTRACT In the nuclear industry, wound contamination with americium is expected to increase with decommissioning and waste management. Treatment of workers with diethylenetriaminepentaacetic acid (DTPA) requires optimization to reduce internal contamination and radiation exposure. This work aimed at evaluating and comparing different DTPA protocol efficacies after wound contamination of rats with americium. Wound contamination was simulated in rats by depositing americium nitrate in an incision in the hind limb. Different routes, times, and frequencies of DTPA administration were evaluated. Individual daily urinary americium excretion and tissue retention were analyzed using the statistical tool STATBIODIS. Urinary profiles, urinary enhancement factors, and inhibition percentages of tissue retention were calculated. A single DTPA administration the day of contamination induced a rapid increase in americium urinary excretion that decreased exponentially over 7 d, indicating that the first DTPA administration should be delivered as early as possible. DTPA treatment limited americium uptake in systemic tissues irrespective of the protocol. Liver and skeleton burdens were markedly reduced, which would drive reduction of radiation dose. Local or intravenous injections were equally effective. Inherent difficulties in wound site activity measurements did not allow identification of a significant decorporating effect at the wound site. Repeated intravenous injections of DTPA also increased americium urinary excretion, which supports the use of multiple DTPA administrations shortly after wound contamination. Results from these statistical analyses will contribute to a better understanding of americium behavior in the presence or absence of DTPA and may aid optimization of treatment for workers.
Collapse
Affiliation(s)
| | - Anne Van der Meeren
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - Sylvie Coudert
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - Nicolas Baglan
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - Nina M Griffiths
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| |
Collapse
|
15
|
Grémy O, Mougin-Degraef M, Devilliers K, Berdal M, Laroche P, Miccoli L. DTPA-Coated Liposomes as a New Delivery Vehicle for Plutonium Decorporation. Radiat Res 2021; 195:77-92. [PMID: 33180911 DOI: 10.1667/rade-20-00142.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/05/2020] [Indexed: 11/03/2022]
Abstract
Administration of diethylenetriaminepentaacetic acid (DTPA) is the treatment approach used to promote the decorporation of internalized plutonium. Here we evaluated the efficacy of PEGylated liposomes coated with DTPA, primarily designed to prevent enhanced plutonium accumulation in bones, compared to marketed nonliposomal DTPA and liposomes encapsulating DTPA. The comparative effects were examined in terms of reduction of activity in tissues of plutonium-injected rats. The prompt treatment with DTPA-coated liposomes elicited an even greater efficacy than that with liposome-encapsulated DTPA in limiting skeletal plutonium. This advantage, undoubtedly due to the anchorage of DTPA to the outer layer of liposomes, is discussed, as well as the reason for the loss of this superiority at delayed times after contamination. Plutonium complexed with DTPA-coated liposomes in extracellular compartments was partly diverted into the liver and the spleen. These complexes and those directly formed inside hepatic and splenic cells appeared to be degraded, then released from cells at extremely slow rates. This transitory accumulation of activity, which could not be counteracted by combining both liposomal forms, entailed an underestimation of the efficacy of DTPA-coated liposomes on soft tissue plutonium until total elimination probably more than one month after treatment. DTPA-coated liposomes may provide the best delivery vehicle of DTPA for preventing plutonium deposition in tissues, especially in bone where nuclides become nearly impossible to remove once fixed. Additional development efforts are needed to limit the diversion or to accelerate cell release of plutonium bound to DTPA-coated liposomes, using a labile bond for DTPA attachment.
Collapse
Affiliation(s)
- Olivier Grémy
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères-le-Châtel, France
| | - Marie Mougin-Degraef
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - Karine Devilliers
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères-le-Châtel, France
| | - Marion Berdal
- Nuclear Medicine, University Hospital, Nantes, France
| | - Pierre Laroche
- Direction of Health, Security, Environment and Radioprotection, ORANO, Paris, France
| | - Laurent Miccoli
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères-le-Châtel, France
| |
Collapse
|
16
|
Almalki M, Lai EP, Ko R, Li C. Facile preparation of liposome-encapsulated Zn–DTPA from soy lecithin for decorporation of radioactive actinides. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diethylenetriaminepentaacetic acid (DTPA) is an attractive decorporation agent that can enhance the excretion of radioactive actinides such as plutonium, americium, and curium after a radiological incident. However, DTPA is excreted in a short period of time after administration. Several formulations have been developed to improve DTPA pharmacokinetics properties. In this project, liposomes were prepared facilely from soy lecithin as a nanocarrier for pulmonary delivery of Zn–DTPA. Lipid hydration, reverse phase evaporation, and mechanical sonication were three methods evaluated for the preparation of liposome-encapsulated Zn-DTPA (lipo-Zn-DTPA). Mechanical sonication was the method of choice due to simple apparatus and facile preparation. Lipo-Zn–DTPA exhibited a hydrodynamic diameter of 178 ± 2 nm and a spherical shape. The loading capacity and encapsulation efficiency of Zn–DTPA were 41 ± 5 mg/g and 10% ± 1%, respectively. Lyophilization of lipo-Zn–DTPA for extended storage did not affect the amount of encapsulated drug or damage the structure of liposomes. An in vivo cytotoxicity test confirmed no serious adverse effect of Zn–DTPA encapsulated lecithin liposomes in rats.
Collapse
Affiliation(s)
- Manal Almalki
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Edward P.C. Lai
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Raymond Ko
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
17
|
Grebenyuk AN, Gladkikh VD. Modern Condition and Prospects for the Development of Medicines towards Prevention and Early Treatment of Radiation Damage. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019110141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Dumit S, Bertelli L, Klumpp JA, Poudel D, Waters TL. Chelation Modeling: The Use of Ad Hoc Models and Approaches to Overcome a Dose Assessment Challenge. HEALTH PHYSICS 2020; 118:193-205. [PMID: 31833972 DOI: 10.1097/hp.0000000000001134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chelating agents are administered to treat significant intakes of radioactive elements such as plutonium, americium, and curium. These drugs may be used as a medical countermeasure after radiological accidents and terrorist acts. The administration of a chelating agent, such as Ca-DTPA or Zn-DTPA, affects the actinide's normal biokinetics. It enhances the actinide's rate of excretion, posing a dose assessment challenge. Thus, the standard biokinetic models cannot be directly applied to the chelation-affected bioassay data in order to assess the radiation dose. The present study reviews the scientific literature, from the early 1970s until the present, on the different studies that focused on developing new chelation models and/or modeling of bioassay data affected by chelation treatment. Although scientific progress has been achieved, there is currently no consensus chelation model available, even after almost 50 y of research. This review acknowledges the efforts made by different research groups, highlighting the different methodology used in some of these studies. Finally, this study puts into perspective where we were, where we are, and where we are heading in regards to chelation modeling.
Collapse
Affiliation(s)
- Sara Dumit
- Los Alamos National Laboratory, Los Alamos, NM
| | | | | | | | | |
Collapse
|
19
|
Vidaud C, Miccoli L, Brulfert F, Aupiais J. Fetuin exhibits a strong affinity for plutonium and may facilitate its accumulation in the skeleton. Sci Rep 2019; 9:17584. [PMID: 31772265 PMCID: PMC6879641 DOI: 10.1038/s41598-019-53770-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/29/2019] [Indexed: 11/09/2022] Open
Abstract
After entering the blood, plutonium accumulates mainly in the liver and the bones. The mechanisms leading to its accumulation in bone are, however, completely unknown. We already know that another uptake pathway not involving the transferrin-mediated pathways is suspected to intervene in the case of the liver. Fetuin, a protein playing an important role in bone metabolism, is proposed as a potential transporter of Pu from serum to bone. For the first time, the binding constants of these two proteins (transferrin and fetuin) with tetravalent plutonium at physiological pH (pH 7.0) were determined by using capillary electrophoresis (CE) coupled with inductively coupled plasma mass spectrometry (ICP-MS). Their very close values (log10 KPuTf = 26.44 ± 0.28 and log10 KPuFet = 26.20 ± 0.24, respectively) suggest that transferrin and fetuin could compete to chelate plutonium, either in the blood or directly at bone surfaces in the case of Pu deposits. We performed competition reaction studies demonstrating that the relative distribution of Pu-protein complexes is fully explained by thermodynamics. Furthermore, considering the average concentrations of transferrin and fetuin in the blood, our calculation is consistent with the bio-distribution of Pu observed in humans.
Collapse
Affiliation(s)
- Claude Vidaud
- CEA, DRF, BIAM-Marcoule, F-30207, Bagnols sur Cèze, France.
| | - Laurent Miccoli
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, F-91297, Arpajon, France
| | | | | |
Collapse
|
20
|
Lahrouch F, Siberchicot B, Fèvre J, Leost L, Aupiais J, Solari PL, Den Auwer C, Di Giorgio C. Carboxylate- and Phosphonate-Modified Polyethylenimine: Toward the Design of Actinide Decorporation Agents. Inorg Chem 2019; 59:128-137. [DOI: 10.1021/acs.inorgchem.9b02014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian Lahrouch
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
| | | | - Jeanne Fèvre
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
| | - Laurane Leost
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
| | | | - Pier Lorenzo Solari
- SOLEIL Synchrotron, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| | | | | |
Collapse
|
21
|
Gremy O, Miccoli L. Comments on "Improved Modeling of Plutonium-DTPA Decorporation" (Radiat Res 2019; 191:201-10). Radiat Res 2019; 192:680-681. [PMID: 31556845 DOI: 10.1667/rr00og.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Olivier Gremy
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | - Laurent Miccoli
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| |
Collapse
|
22
|
Miccoli L, Ménétrier F, Laroche P, Grémy O. Chelation Treatment by Early Inhalation of Liquid Aerosol DTPA for Removing Plutonium after Rat Lung Contamination. Radiat Res 2019; 192:630-639. [PMID: 31545678 DOI: 10.1667/rr15451.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Occupational contamination is a potential health risk associated with plutonium inhalation. DTPA remains the chelating drug of choice to decorporate plutonium. In this study, plutonium was found to be more effectively removed from lungs by a single inhalation of nebulized DTPA solution at only 1.1 µmol.kg-1 than by a single intravenous (i.v.) dose of DTPA at 15 µmol.kg-1. When DTPA was inhaled promptly after contamination, it removed the transportable fraction of plutonium prior blood absorption, thereby preventing both liver and bone depositions. Conversely, DTPA injection was better than inhalation at reducing the extrapulmonary burden, probably due to the much greater circulating dose, favoring the mobilization of plutonium already translocated. Thus, prompt inhalation, concomitantly supplemented with i.v. injection, of DTPA induced an important decrease in extrapulmonary deposits. Repeated DTPA inhalations over several weeks were more efficient than a single inhalation in limiting both pulmonary and extrapulmonary plutonium retention, due at least in part to the chelation of the transportable fraction of lung plutonium. Furthermore, repeated DTPA injections remained better at reducing liver and bone plutonium retentions. Taken together, our results suggest that multiple DTPA inhalations may be considered an effective treatment after inhalation of plutonium, particularly given the ease of this needle-free delivery, for the two following conditions: 1. A treatment combining i.v. injection and inhalation should be given in an emergency scenario to efficiently chelate the activity already absorbed; 2. Inhalations should be administered daily to effectively trap the early transferable fraction.
Collapse
Affiliation(s)
- Laurent Miccoli
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | | | - Pierre Laroche
- Direction of Health, Security, Environment & Radioprotection, ORANO, Paris, France
| | - Olivier Grémy
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| |
Collapse
|
23
|
Lamart S, Van der Meeren A, Grémy O, Miccoli L, Coudert S, Dubois S, Bibard S, Serond AP, Angulo JF, Griffiths NM. Americium biodistribution in rats after wound contamination with different physicochemical forms in the presence or absence of plutonium: analyses using STATBIODIS. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:707-738. [PMID: 31223133 DOI: 10.1088/1361-6498/ab076b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Americium (Am) biodistribution data obtained after wound contamination in rats were analysed to evaluate and quantify the influence of different physicochemical forms of Am in the presence or absence of plutonium (Pu). The biodistribution data were individual Am daily urinary excretion and tissue retention. The data were analysed with STATBIODIS, a statistical tool developed in the laboratory and based on the R language. Non-parametric methods were selected to comply with the data characteristics. Am systemic tissue retention and urinary excretion data were much greater for contamination with soluble physicochemical forms than insoluble forms. Meanwhile, Am relative biodistribution between the main retention tissues (skeleton, liver and kidney) remained the same. Hence, after absorption into blood the radionuclide behaviour was independent of the physicochemical form. The presence of Pu did not change the Am biodistribution. Comparisons of the biodistribution data from the laboratory with mean values published by other laboratories showed that soluble to moderately soluble forms of Am resulted in similar urine excretion after contamination, whether it was intravenous, intramuscular, subcutaneous injection or incision. Findings from this work will contribute to improve the understanding and interpretation of wound contamination cases with different physicochemical forms and mixtures of actinides including Am.
Collapse
Affiliation(s)
- Stephanie Lamart
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - Anne Van der Meeren
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - Olivier Grémy
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - Laurent Miccoli
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - Sylvie Coudert
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | | | - Solveig Bibard
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | | | - Jaime F Angulo
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| | - Nina M Griffiths
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, 91297 Arpajon, France
| |
Collapse
|
24
|
Wang X, Dai X, Shi C, Wan J, Silver MA, Zhang L, Chen L, Yi X, Chen B, Zhang D, Yang K, Diwu J, Wang J, Xu Y, Zhou R, Chai Z, Wang S. A 3,2-Hydroxypyridinone-based Decorporation Agent that Removes Uranium from Bones In Vivo. Nat Commun 2019; 10:2570. [PMID: 31239437 PMCID: PMC6592941 DOI: 10.1038/s41467-019-10276-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023] Open
Abstract
Searching for actinide decorporation agents with advantages of high decorporation efficiency, minimal biological toxicity, and high oral efficiency is crucial for nuclear safety and the sustainable development of nuclear energy. Removing actinides deposited in bones after intake is one of the most significant challenges remaining in this field because of the instantaneous formation of highly stable actinide phosphate complexes upon contact with hydroxyapatite. Here we report a hydroxypyridinone-based ligand (5LIO-1-Cm-3,2-HOPO) exhibiting stronger affinity for U(VI) compared with the reported tetradentate hydroxypyridinone ligands. This is further revealed by the first principles calculation analysis on bonding between the ligand and uranium. Both in vitro uranium removal assay and in vivo decorporation experiments with mice show that 5LIO-1-Cm-3,2-HOPO can remove uranium from kidneys and bones with high efficiencies, while the decorporation efficiency is nearly independent of the treatment time. Moreover, this ligand shows a high oral decorporation efficiency, making it attractive for practical applications.
Collapse
Affiliation(s)
- Xiaomei Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.,Shanghai Institute of Applied Physics and Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, University of Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Cen Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianmei Wan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Mark A Silver
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Linjuan Zhang
- Shanghai Institute of Applied Physics and Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, University of Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xuan Yi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Bizheng Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Jianqiang Wang
- Shanghai Institute of Applied Physics and Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, University of Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yujie Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China. .,Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, NY 13 10598; Department of Chemistry, Columbia University, New York, NY, 10027, United States.
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
25
|
Van der Meeren A, Angulo JF, Bohand S, Griffiths NM. A quick and simple in vitro assay to predict bioavailability of actinides following accidental exposure. Toxicol In Vitro 2019; 58:142-149. [PMID: 30905861 DOI: 10.1016/j.tiv.2019.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 11/15/2022]
Abstract
Physicochemical properties of actinides highly influence internal intake and biodistribution. An a priori knowledge of the dissolution properties of compounds involved in accidental exposure would be of great help in early dose assessment. However, this information is rarely available, leading to difficulties in interpreting excretion data from contaminated victims. We developed an in vitro acellular assay to predict in vivo bioavailability of actinides and improve medical handling of the victims. Various actinides of different physicochemical properties were used to validate the reliability of the assay to mimic in vivo behavior of the contaminants. Our assay was designed as a dynamic muticompartmental system in which an agarose gel represents the retention compartment of actinides and a dynamic phase the transfer compartment. Relevant physiological conditions were obtained by introducing various components both in the static and dynamic phases. The proposed model may provide a good prediction of in vivo behavior and could be used as a first assessment to predict the fraction of actinides that could be potentially transferred from retention compartments, as well as the fraction available to chelating drugs.
Collapse
Affiliation(s)
- Anne Van der Meeren
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France.
| | - Jaime F Angulo
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| | - Sandra Bohand
- Direction of Health, Security, Environment & Radioprotection, Orano Mines, Paris, France
| | - Nina M Griffiths
- Laboratory of Radio Toxicology, CEA, Paris-Saclay University, 91297 Arpajon, France
| |
Collapse
|
26
|
Kastl M, Grémy O, Miccoli L, Lamart S, Li W, Giussani A. Modelling DTPA decorporation of Am in rats. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191406003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Dumit S, Avtandilashvili M, Strom DJ, McComish SL, Tabatadze G, Tolmachev SY. Improved Modeling of Plutonium-DTPA Decorporation. Radiat Res 2018; 191:201-210. [DOI: 10.1667/rr15188.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sara Dumit
- U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
| | - Maia Avtandilashvili
- U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
| | - Daniel J. Strom
- U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
| | - Stacey L. McComish
- U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
| | - George Tabatadze
- U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
| | - Sergei Y. Tolmachev
- U.S. Transuranium and Uranium Registries, Washington State University, Richland, Washington 99354–4959
| |
Collapse
|
28
|
Lahrouch F, Siberchicot B, Leost L, Aupiais J, Rossberg A, Hennig C, Den Auwer C, Di Giorgio C. Polyethyleneimine methylenecarboxylate: a macromolecular DTPA analogue to chelate plutonium(iv). Chem Commun (Camb) 2018; 54:11705-11708. [PMID: 30276368 DOI: 10.1039/c8cc05206a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Up until now, molecular chelating agents, such as diethylenetriamine pentaacetic acid (DTPA), have been the standard method for actinide human decorporation. Mainly active in blood serum, their distribution within the body is thus limited. To treat a wider range of organs affected by plutonium contamination, a potential new class of macromolecular decorporation agents is being studied. Polyethyleneimine methylenecarboxylate (PEI-MC) is one such example. It is being considered here because of its capacity for targeting the liver and bones.
Collapse
Affiliation(s)
- Florian Lahrouch
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108 Nice, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Grémy O, Miccoli L, Lelan F, Bohand S, Cherel M, Mougin-Degraef M. Delivery of DTPA through Liposomes as a Good Strategy for Enhancing Plutonium Decorporation Regardless of Treatment Regimen. Radiat Res 2018. [DOI: 10.1667/rr14968.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Olivier Grémy
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | - Laurent Miccoli
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | - Faustine Lelan
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | | | - Michel Cherel
- CRCINA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | |
Collapse
|
30
|
Miller G, Klumpp JA, Melo D, Poudel D. The Role Of Extracellular Fluid in Biokinetic Modeling. HEALTH PHYSICS 2017; 113:519-526. [PMID: 29112621 DOI: 10.1097/hp.0000000000000722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pharmacokinetic equations of Pierson et al. describing the behavior of bromide in rat provide a general approach to the modeling of extracellular fluid (ECF). The movement of material into ECF spaces is rapid and is completely characterized by tissue volumes and vascular flow rates to and from a tissue, the volumes of the tissue, and the ECF associated with the tissue. Early-time measurements are needed to characterize ECF. Measurements of DTPA disappearance from plasma by Wedeking et al. are discussed as an example of such measurements. In any biokinetic model, the fastest transfer rates are not determinable with the usual datasets, and if determined empirically, these rates will have very large and highly correlated uncertainties, so particular values of these rates, even though the model fits the available data, are not significant. A pharmacokinetic front-end provides values for these fast rates. An example of such a front-end for a 200-g rat is given.
Collapse
Affiliation(s)
- Guthrie Miller
- *Santa Fe, NM; †Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM; ‡Melohill Technology, LLC, Rockville, MD
| | | | | | | |
Collapse
|
31
|
Grémy O, Coudert S, Renault D, Miccoli L. Decorporation Approach after Rat Lung Contamination with Plutonium: Evaluation of the Key Parameters Influencing the Efficacy of a Protracted Chelation Treatment. Radiat Res 2017; 188:552-561. [PMID: 28945525 DOI: 10.1667/rr14782.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While the efficacy of a protracted zinc (Zn)- or calcium (Ca)-diethylenetriaminepentaacetic acid (DTPA) treatment in reducing transuranic body burden has already been demonstrated, questions about therapeutic variables remain. In response to this, we designed animal experiments primarily to assess both the effect of fractionation of a given dose and the effect of the frequency of dose fraction, with the same total dose. In our study, rats were contaminated intravenously with plutonium (Pu) then treated several days later with Ca-DTPA given at once or in various split-dose regimens cumulating to the same total dose and spread over several days. Similar efficacies were induced by the injection of the total dose or by splitting the dose in several smaller doses, independent of the number of doses and the dose level per injection. In a second study, rats were pulmonary contaminated, and three weeks later they received a Ca-DTPA dose 11-fold higher than the maximal daily recommended dose, administered either as a single bolus or as numerous multiple injections cumulating to the same dose, based on different injection frequency schedules. Independent of frequency schedule, the various split-dose regimens spread over weeks/months were as efficient as single delivery of the total dose in mobilizing lung plutonium, and had a therapeutic advantage for removal of retained hepatic and bone plutonium burdens. We concluded that cumulative dose level was a therapeutic variable of greater importance than the distribution of split doses for the success of a repeated treatment regimen on retained tissue plutonium. In addition, pulmonary administration of clodronate, which aims at killing alveolar macrophages and subsequently releasing their plutonium content, and which is associated with a continuous Ca-DTPA infusion regimen, suggested that the efficacy of injected Ca-DTPA in decorporating lung deposit is limited, due to its restricted penetration into alveolar macrophages and not because plutonium, as a physicochemical form, is unavailable for chelation.
Collapse
Affiliation(s)
- Olivier Grémy
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | - Sylvie Coudert
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | - Daniel Renault
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | - Laurent Miccoli
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| |
Collapse
|
32
|
Poudel D, Bertelli L, Klumpp JA, Waters TL. Interpretation of Urinary Excretion Data From Plutonium Wound Cases Treated With DTPA: Application of Different Models and Approaches. HEALTH PHYSICS 2017; 113:30-40. [PMID: 28542009 DOI: 10.1097/hp.0000000000000662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
After a chelation treatment, assessment of intake and doses is the primary concern of an internal dosimetrist. Using the urinary excretion data from two actual wound cases encountered at Los Alamos National Laboratory (LANL), this paper discusses several methods that can be used to interpret intakes from the urinary data collected after one or multiple chelation treatments. One of the methods uses only the data assumed to be unaffected by chelation (data collected beyond 100 d after the last treatment). This method, used by many facilities for official dose records, was implemented by employing maximum likelihood analysis and Bayesian analysis methods. The impacts of an improper assumption about the physicochemical behavior of a radioactive material and the importance of the use of a facility-specific biokinetic model when available have also been demonstrated. Another method analyzed both the affected and unaffected urinary data using an empirical urinary excretion model. This method, although case-specific, was useful in determining the actual intakes and the doses averted or the reduction in body burdens due to chelation treatments. This approach was important in determining the enhancement factors, the behavior of the chelate, and other observations that may be pertinent to several DTPA compartmental modeling approaches being conducted by the health physics community.
Collapse
Affiliation(s)
- Deepesh Poudel
- *Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | | | | | | |
Collapse
|
33
|
Van der Meeren A, Moureau A, Laurent D, Laroche P, Angulo JF. In vitro assessment of plutonium uptake and release using the human macrophage-like THP-1 cells. Toxicol In Vitro 2016; 37:25-33. [PMID: 27458071 DOI: 10.1016/j.tiv.2016.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/26/2022]
Abstract
Plutonium (Pu) intake by inhalation is one of the major potential consequences following an accident in the nuclear industry or after improvised nuclear device explosion. Macrophages are essential players in retention and clearance of inhaled compounds. However, the extent to which these phagocytic cells are involved in these processes highly depends on the solubility properties of the Pu deposited in the lungs. Our objectives were to develop an in vitro model representative of the human pulmonary macrophage capacity to internalize and release Pu compounds in presence or not of the chelating drug diethylenetriaminepentaacetate (DTPA). The monocyte cell line THP-1 was used after differentiation into macrophage-like cells. We assessed the cellular uptake of various forms of Pu which differ in their solubility, as well as the release of the internalized Pu. Results obtained with differentiated THP-1 cells are in good agreement with data from rat alveolar macrophages and fit well with in vivo data. In both cell types, Pu uptake and release depend upon Pu solubility and in all cases DTPA increases Pu release. The proposed model may provide a good complement to in vivo animal experiments and could be used in a first assessment to predict the fraction of Pu that could be potentially trapped, as well as the fraction available to chelating drugs.
Collapse
Affiliation(s)
- Anne Van der Meeren
- Laboratory of Radio Toxicology, CEA/DRF/iRCM, Bruyères le Châtel, 91297 Arpajon, France.
| | - Agnès Moureau
- Laboratory of Radio Toxicology, CEA/DRF/iRCM, Bruyères le Châtel, 91297 Arpajon, France
| | - David Laurent
- Laboratory of Radio Toxicology, CEA/DRF/iRCM, Bruyères le Châtel, 91297 Arpajon, France
| | - Pierre Laroche
- Direction Health Security Environment & Radioprotection, AREVA, Paris, France
| | - Jaime F Angulo
- Laboratory of Radio Toxicology, CEA/DRF/iRCM, Bruyères le Châtel, 91297 Arpajon, France
| |
Collapse
|