1
|
Wang KX, Ye C, Yang X, Ma P, Yan C, Luo L. New Insights into the Understanding of Mechanisms of Radiation-Induced Heart Disease. Curr Treat Options Oncol 2023; 24:12-29. [PMID: 36598620 DOI: 10.1007/s11864-022-01041-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
OPINION STATEMENT Cancer patients who receive high-dose thoracic radiotherapy may develop radiation-induced heart disease (RIHD). The clinical presentation of RIHD comprises coronary artery atherosclerosis, valvular disease, pericarditis, cardiomyopathy, and conduction defects. These complications have significantly reduced due to the improved radiotherapy techniques. However, such methods still could not avoid heart radiation exposure. Furthermore, people who received relatively low-dose radiation exposures have exhibited significantly elevated RIHD risks in cohort studies of atomic bomb survivors and occupational exposures. The increased potential in exposure to natural and artificial ionizing radiation sources has emphasized the necessity to understand the development of RIHD. The pathological processes of RIHD include endothelial dysfunction, inflammation, fibrosis, and hypertrophy. The underlying mechanisms may involve the changes in oxidative stress, DNA damage response, telomere erosion, mitochondrial dysfunction, epigenetic regulation, circulation factors, protein post-translational modification, and metabolites. This review will discuss the recent advances in the mechanisms of RIHD at cellular and molecular levels.
Collapse
Affiliation(s)
- Kai-Xuan Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Cong Ye
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Xu Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Ping Ma
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Chen Yan
- Department of Rheumatology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, 330006, People's Republic of China.
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China.
| |
Collapse
|
2
|
Zaghary WA, Elansary MM, Shouman DN, Abdelrahim AA, Abu-Zied KM, Sakr TM. Can nanotechnology overcome challenges facing stem cell therapy? A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Glover JC, Aswendt M, Boulland JL, Lojk J, Stamenković S, Andjus P, Fiori F, Hoehn M, Mitrecic D, Pavlin M, Cavalli S, Frati C, Quaini F. In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Mol Imaging Biol 2021; 22:1469-1488. [PMID: 31802361 DOI: 10.1007/s11307-019-01440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.
Collapse
Affiliation(s)
- Joel C Glover
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway. .,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway.
| | - Markus Aswendt
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Jean-Luc Boulland
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia
| | - Stefan Stamenković
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Fabrizio Fiori
- Department of Applied Physics, Università Politecnica delle Marche - Di.S.C.O., Via Brecce Bianche, 60131, Ancona, Italy
| | - Mathias Hoehn
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia.,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Stefano Cavalli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
4
|
Luo L, Yan C, Fuchi N, Kodama Y, Zhang X, Shinji G, Miura K, Sasaki H, Li TS. Mesenchymal stem cell-derived extracellular vesicles as probable triggers of radiation-induced heart disease. Stem Cell Res Ther 2021; 12:422. [PMID: 34294160 PMCID: PMC8296737 DOI: 10.1186/s13287-021-02504-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Radiation-induced heart disease has been reported, but the underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs), also residing in the heart, are highly susceptible to radiation. We examined the hypothesis that the altered secretion of extracellular vesicles (EVs) from MSCs is the trigger of radiation-induced heart disease. METHODS By exposing human placental tissue-derived MSCs to 5 Gy γ-rays, we then isolated EVs from the culture medium 48 h later and evaluated the changes in quantity and quality of EVs from MSCs after radiation exposure. The biological effects of EVs from irradiated MSCs on HUVECs and H9c2 cells were also examined. RESULTS Although the amount and size distribution of EVs did not differ between the nonirradiated and irradiated MSCs, miRNA sequences indicated many upregulated or downregulated miRNAs in irradiated MSCs EVs. In vitro experiments using HUVEC and H9c2 cells showed that irradiated MSC-EVs decreased cell proliferation (P < 0.01), but increased cell apoptosis and DNA damage. Moreover, irradiated MSC-EVs impaired the HUVEC tube formation and induced calcium overload in H9c2 cells. CONCLUSIONS EVs released from irradiated MSCs show altered miRNA profiles and harmful effects on heart cells, which provides new insight into the mechanism of radiation-related heart disease risks.
Collapse
Affiliation(s)
- Lan Luo
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Tongshan Road 209, Xuzhou, 221004, China
| | - Chen Yan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, 852-8523, Japan
| | - Yukinobu Kodama
- Department of Pharmacy, Nagasaki University Hospital, Nagasaki, 852-8523, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Goto Shinji
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, 852-8523, Japan
| | - Hitoshi Sasaki
- Department of Pharmacy, Nagasaki University Hospital, Nagasaki, 852-8523, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
5
|
Sun CW, Wu LC, Wankhede M, Wang D, Thoerner J, Woody L, Sorg BS, Townes TM, Terman DS. Exogenous sickle erythrocytes combined with vascular disruption trigger disseminated tumor vaso-occlusion and lung tumor regression. JCI Insight 2019; 4:125535. [PMID: 30944254 DOI: 10.1172/jci.insight.125535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Hypoxic tumor niches are chief causes of treatment resistance and tumor recurrence. Sickle erythrocytes' (SSRBCs') intrinsic oxygen-sensing functionality empowers them to access such hypoxic niches wherein they form microaggregates that induce focal vessel closure. In search of measures to augment the scale of SSRBC-mediated tumor vaso-occlusion, we turned to the vascular disrupting agent, combretastatin A-4 (CA-4). CA-4 induces selective tumor endothelial injury, blood stasis, and hypoxia but fails to eliminate peripheral tumor foci. In this article, we show that introducing deoxygenated SSRBCs into tumor microvessels treated with CA-4 and sublethal radiation (SR) produces a massive surge of tumor vaso-occlusion and broadly propagated tumor infarctions that engulfs treatment-resistant hypoxic niches and eradicates established lung tumors. Tumor regression was histologically corroborated by significant treatment effect. Treated tumors displayed disseminated microvessels occluded by tightly packed SSRBCs along with widely distributed pimidazole-positive hypoxic tumor cells. Humanized HbS-knockin mice (SSKI) but not HbA-knockin mice (AAKI) showed a similar treatment response underscoring SSRBCs as the paramount tumoricidal effectors. Thus, CA-4-SR-remodeled tumor vessels license SSRBCs to produce an unprecedented surge of tumor vaso-occlusion and infarction that envelops treatment-resistant tumor niches resulting in complete tumor regression. Strategically deployed, these innovative tools constitute a major conceptual advance with compelling translational potential.
Collapse
Affiliation(s)
- Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Li-Chen Wu
- Department of Biochemistry and Molecular Genetics, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Mamta Wankhede
- Department of Biomedical Engineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dezhi Wang
- Department of Pathology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Jutta Thoerner
- Histopathology Section, Hospital of the Monterey Peninsula, Monterey, California, USA
| | - Lawrence Woody
- Histopathology Section, Hospital of the Monterey Peninsula, Monterey, California, USA
| | - Brian S Sorg
- Cancer Diagnosis Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - David S Terman
- Department of Biochemistry and Molecular Genetics, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|