1
|
Kato TA, Fujii Y, Junko M, Su C, Haskin JS, Hirakawa H, Fujimori A, Wilson PF. Cell cycle-dependent radiosensitivity of CHO DNA repair mutants exposed to accelerated charged particles. Biochem Biophys Res Commun 2025; 762:151747. [PMID: 40199128 DOI: 10.1016/j.bbrc.2025.151747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The two primary DNA double-strand break (DSB) repair pathways, non-homologous end joining (NHEJ) and homologous recombinational repair (HRR), play crucial roles in determining radiosensitivity throughout the cell cycle. Our study investigated mechanisms underlying cell cycle-dependent radiosensitivity following exposure to accelerated charged particles in DSB signaling and repair-deficient CHO mutant cell lines. We confirmed NHEJ-deficient V3 cells exhibit hyper-radiosensitivity across all phases, while HRR-deficient 51D1 cells display increased sensitivity in the typically radioresistant S/G2 phase following X- and gamma-rays. Exposures to accelerated 290 MeV/n C-12 and 500 MeV/n Fe-56 ions induced complex DNA damage that was not fully repaired by either pathway, leading to increased cell killing. HRR-deficient cells exhibited higher relative biological effectiveness (RBE) values for cell killing in G1 and S and levels of chromatid-type chromosomal aberrations were higher in HRR-deficient cells. Additionally, impaired G2-phase checkpoint activation in HRR-deficient cells contributed to mitotic entry with unresolved DNA damage. Our findings suggest that charged particles produce complex lesions that require coordinated repair by both major DSB repair pathways, and disruption of either pathway leads to increased radiosensitivity.
Collapse
Affiliation(s)
- Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Colorado, USA.
| | - Yoshihiro Fujii
- Department of Radiation Technology, Nihon Institute of Medical Sciences, Saitama, Japan
| | - Maeda Junko
- Department of Environmental and Radiological Health Sciences, Colorado State University, Colorado, USA
| | - Cathy Su
- Department of Environmental and Radiological Health Sciences, Colorado State University, Colorado, USA
| | - Jeremy S Haskin
- Department of Environmental and Radiological Health Sciences, Colorado State University, Colorado, USA
| | - Hirokazu Hirakawa
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Akira Fujimori
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Paul F Wilson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
2
|
Zhang D, Shimokawa T, Guo Q, Dan S, Miki Y, Sunada S. Discovery of novel DNA-damaging agents through phenotypic screening for DNA double-strand break. Cancer Sci 2023; 114:1108-1117. [PMID: 36385507 PMCID: PMC9986057 DOI: 10.1111/cas.15659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) seriously damage DNA and promote genomic instability that can lead to cell death. They are the source of conditions such as carcinogenesis and aging, but also have important applications in cancer therapy. Therefore, rapid detection and quantification of DSBs in cells are necessary for identifying carcinogenic and anticancer factors. In this study, we detected DSBs using a flow cytometry-based high-throughput method to analyze γH2AX intensity. We screened a chemical library containing 9600 compounds and detected multiple DNA-damaging compounds, although we could not identify mechanisms of action through this procedure. Thus, we also profiled a representative compound with the highest DSB potential, DNA-damaging agent-1 (DDA-1), using a bioinformatics-based method we termed "molecular profiling." Prediction and verification analysis revealed DDA-1 as a potential inhibitor of topoisomerase IIα, different from known inhibitors such as etoposide and doxorubicin. Additional investigation of DDA-1 analogs and xenograft models suggested that DDA-1 is a potential anticancer drug. In conclusion, our findings established that combining high-throughput DSB detection and molecular profiling to undertake phenotypic analysis is a viable method for efficient identification of novel DNA-damaging compounds for clinical applications.
Collapse
Affiliation(s)
- Doudou Zhang
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Shimokawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Qianqian Guo
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeaki Sunada
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Oncology, Juntendo University School of Medicine, Tokyo, Japan.,Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
3
|
Khodamoradi E, Afrashi S, Khoshgard K, Fathi F, Shahasavari S, Azmoonfar R, Najafi M. Simultaneous effect of gamma and Wi-Fi radiation on gamma-H2Ax expression in peripheral blood of rat: A radio-protection note. Biochem Biophys Rep 2022; 30:101232. [PMID: 35243013 PMCID: PMC8881645 DOI: 10.1016/j.bbrep.2022.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Nuclear medicine patients are isolated in a room after the injection of a radiopharmaceutical. They may be active Wi-Fi option of its smartphone mobile or other environmental radiofrequency waves. The hypothesis of this study was the evaluation of increased biological effects of the simultaneous exposure to gamma-ray and the Wi-Fi waves by measuring the level of the increased double strand-breaks DNA in peripheral blood lymphocyte in the rat. MATERIALS AND METHODS Fifty male Wistar rats were exposed for 2, 24, and 72 h only by Wi-Fi, 99m Tc, and simultaneously by Wi-Fi and 99m Tc. The power density levels of Wi-Fi emitter at 15 cm was 4.2nW/ c m 2 . An activity of 100 μCi of 99m Tc was injected intraperitoneally. Blood samples were taken by cardiac puncture following general anesthesia. Mononuclear cells are extraction by Ficoll-Hypaque density gradient centrifugation. The number of gamma-H2AX foci per nucleus was counted by flow cytometry. The statistical differences between experimental groups at 2, 24, and 72 h were determined with a repeated measure's analysis of variance. The significant difference between groups at the same time was analyzed with the Kruskal-Wallis Test. RESULTS The manner of gamma-H2AX expression was not the same for three groups in time. The number of gamma-H2AX foci between the three groups was a significant difference after 72 h. CONCLUSION Simultaneous Wi-Fi and gamma-ray exposures can increase the number of double-strand break DNA in peripheral blood lymphocytes to exposure of gamma-ray to 72 h after technetium injection in the rat.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Afrashi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Karim Khoshgard
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soodeh Shahasavari
- Department of Health Information Management, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasool Azmoonfar
- Department of Radiology, School of Paramedical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
The Effect of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for Cells Irradiated with Grenz Rays. Cancers (Basel) 2022; 14:cancers14051262. [PMID: 35267573 PMCID: PMC8909589 DOI: 10.3390/cancers14051262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022] Open
Abstract
Grenz-ray therapy (GT) is commonly used for dermatological radiotherapy and has a higher linear energy transfer, relative biological effectiveness (RBE) and oxygen enhancement ratio (OER). GT is a treatment option for lentigo maligna and lentigo maligna melanoma. This study aims to calculate the RBE for DNA double-strand break (DSB) induction and cell survival under hypoxic conditions for GT. The yield of DSBs induced by GT is calculated at the aerobic and hypoxic conditions, using a Monte Carlo damage simulation (MCDS) software. The RBE value for cell survival is calculated using the repair–misrepair–fixation (RMF) model. The RBE values for cell survival for cells irradiated by 15 kV, 10 kV and 10 kVp and titanium K-shell X-rays (4.55 kV) relative to 60Co γ-rays are 1.0–1.6 at the aerobic conditions and moderate hypoxia (2% O2), respectively, but increase to 1.2, 1.4 and 1.9 and 2.1 in conditions of severe hypoxia (0.1% O2). The OER values for DSB induction relative to 60Co γ-rays are about constant and ~2.4 for GT, but the OER for cell survival is 2.8–2.0 as photon energy decreases from 15 kV to 4.55 kV. The results indicate that GT results in more DSB induction and allows effective tumor control for superficial and hypoxic tumors.
Collapse
|
5
|
Jin Y, Li J, Li J, Zhang N, Guo K, Zhang Q, Wang X, Yang K. Visualized Analysis of Heavy Ion Radiotherapy: Development, Barriers and Future Directions. Front Oncol 2021; 11:634913. [PMID: 34307120 PMCID: PMC8300564 DOI: 10.3389/fonc.2021.634913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Background Heavy ion radiotherapy (HIRT) has great advantages as tumor radiotherapy. Methods Based on 1,558 literatures from core collections of Web of Science from 1980 to 2020, this study visually analyzes the evolution of HIRT research, and sorts out the hotspots and trends of HIRT research using CiteSpace software. Results Research on HIRT has received more extensive attention over the last 40 years. The development of HIRT is not only closely related to radiation and oncology, but also closely related to the development of human society. In terms of citation frequency, "International Journal of Radiation Oncology*Biology*Physics" was the top journal. In terms of influence, "Radiotherapy and Oncology" was the top journal. "Radiation therapy" and "carbon ion radiotherapy" were the two most frequently used keywords in this field. Conclusion The evolution of the HIRT research has occurred in approximately three stages, including technological exploration, safety and effectiveness research and technological breakthroughs. Finally, some suggestions for future research are put forward.
Collapse
Affiliation(s)
- Yuanchang Jin
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Heavy Ion Treatment Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Jingwen Li
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jieyun Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Na Zhang
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kangle Guo
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Heavy Ion Treatment Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaohu Wang
- Heavy Ion Treatment Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
CDK1 inhibitor controls G2/M phase transition and reverses DNA damage sensitivity. Biochem Biophys Res Commun 2021; 550:56-61. [PMID: 33684621 DOI: 10.1016/j.bbrc.2021.02.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 12/28/2022]
Abstract
CDK1 plays key roles in cell cycle progression through the G2/M phase transition and activation of homologous recombination (HR) DNA repair pathway. Accordingly, various CDK1 inhibitors have been developed for cancer therapy that induce prolonged G2 arrest and/or sensitize cells to DNA damaging agents in tumor cells, resulting in cell death. However, CDK1 inhibition can induce resistance to DNA damage in certain conditions. The mechanism of different DNA damage sensitivity is not completely understood. We performed immunofluorescence and flow cytometry analysis to investigate DNA damage responses in human tumor cells during low and high dose treatments with RO-3306, a selective CDK1 inhibitor. This comparative investigation demonstrated that RO-3306-induced G2 arrest prevented cells with DNA double-strand breaks from transitioning into the M-phase and that the cells maintained their DNA repair capacity in G2-phase, even under RO-3306 dose-dependent DNA repair inhibition. These findings reveal that CDK1 inhibitor-induced DNA repair inhibition and cell cycle control, which regulate each other during the G2/M phase transition determine the cellular sensitivity to DNA damage, providing insight useful for developing clinical strategies targeting CDK1 inhibition in tumor cells.
Collapse
|
7
|
Forster JC, Douglass MJJ, Phillips WM, Bezak E. Monte Carlo Simulation of the Oxygen Effect in DNA Damage Induction by Ionizing Radiation. Radiat Res 2018; 190:248-261. [PMID: 29953346 DOI: 10.1667/rr15050.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA damage induced by ionizing radiation exposure is enhanced in the presence of oxygen (the "oxygen effect"). Despite its practical importance in radiotherapy, the oxygen effect has largely been excluded from models that predict DNA damage from radiation tracks. A Monte Carlo-based algorithm was developed in MATLAB software to predict DNA damage from physical and chemical tracks through a cell nucleus simulated in Geant4-DNA, taking into account the effects of cellular oxygenation (pO2) on DNA radical chemistry processes. An initial spatial distribution of DNA base and sugar radicals was determined by spatially clustering direct events (that deposited at least 10.79 eV) and hydroxyl radical (•OH) interactions. The oxygen effect was modeled by increasing the efficiency with which sugar radicals from direct-type effects were converted to strand breaks from 0.6 to 1, the efficiency with which sugar radicals from the indirect effect were converted to strand breaks from 0.28 to 1 and the efficiency of base-to-sugar radical transfer from •OH-mediated base radicals from 0 to 0.03 with increasing pO2 from 0 to 760 mmHg. The DNA damage induction algorithm was applied to tracks from electrons, protons and alphas with LET values from 0.2 to 150 keV/μm under different pO2 conditions. The oxygen enhancement ratio for double-strand break induction was 3.0 for low-LET radiation up to approximately 15 keV/μm, after which it gradually decreased to a value of 1.3 at 150 keV/μm. These values were consistent with a range of experimental data published in the literature. The DNA damage yields were verified using experimental data in the literature and results from other theoretical models. The spatial clustering approach developed in this work has low memory requirements and may be suitable for particle tracking simulations with a large number of cells.
Collapse
Affiliation(s)
- Jake C Forster
- a Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia.,b Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | - Michael J J Douglass
- a Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia.,b Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | - Wendy M Phillips
- a Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia.,b Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia
| | - Eva Bezak
- a Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia.,c Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|