1
|
Ali Z, Al-Ghouti MA, Abou-Saleh H, Rahman MM. Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging. Mar Drugs 2024; 22:446. [PMID: 39452854 PMCID: PMC11509197 DOI: 10.3390/md22100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.
Collapse
Affiliation(s)
- Zayana Ali
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad Ahmed Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
2
|
Fang ZB, Wang GX, Cai GZ, Zhang PX, Liu DL, Chu SF, Li HL, Zhao HX. Association between fatty acids intake and bone mineral density in adults aged 20–59: NHANES 2011–2018. Front Nutr 2023; 10:1033195. [PMID: 37102128 PMCID: PMC10123400 DOI: 10.3389/fnut.2023.1033195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundPrevious studies have investigated the link between fatty acid intake and bone mineral density (BMD), but the results are controversial. This study aims to examine the relationship between fatty acid intake and BMD in adults aged 20–59.MethodsThe association between fatty acid consumption and BMD was analyzed using a weighted multiple linear regression model with National Health and Nutrition Examination Survey data from 2011 to 2018. The linearity relationship and saturation value of the connection between fatty acid consumption and BMD were assessed by fitting a smooth curve and a saturation effect analysis model.ResultsThe study included 8,942 subjects. We found a significant positive correlation between the consumption of saturated fatty acids, monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids and BMD. In subgroup analyses that were stratified by gender and race, this association was still shown to be significant. Based on the smooth curve and saturation effect analysis, we found no saturation effect for the three fatty acids and total BMD. However, there was a turning point (20.52 g/d) between MUFAs intake and BMD, and only MUFAs intake >20.52 g/d showed a positive correlation between MUFAs and BMD.ConclusionWe found that fatty acid intake is beneficial for bone density in adults. Therefore, according to our findings, it is recommended that adults consume moderate amounts of fatty acids to ensure adequate bone mass but not metabolic diseases.
Collapse
Affiliation(s)
- Ze-Bin Fang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Gao-Xiang Wang
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - Gui-Zhang Cai
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Peng-Xiang Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - De-Liang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- *Correspondence: De-Liang Liu,
| | - Shu-Fang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Shu-Fang Chu,
| | - Hui-Lin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Hui-Lin Li,
| | - Hing-Xia Zhao
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
3
|
Wang C, Qin X, Gong G, Wang L, Su Y, Yin Y. Correlation between changes of pelvic bone marrow fat content and hematological toxicity in concurrent chemoradiotherapy for cervical cancer. Radiat Oncol 2022; 17:70. [PMID: 35392934 PMCID: PMC8991809 DOI: 10.1186/s13014-022-02029-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives To quantify the pelvic bone marrow (PBM) fat content changes receiving different radiation doses of concurrent chemoradiotherapy for cervical cancer and to determine association with peripheral blood cell counts. Methods The data of 54 patients were prospectively collected. Patients underwent MRI iterative decomposition of water and fat with echo asymmetrical and least squares estimation (IDEAL IQ) scanning at RT-Pre, RT mid-point, RT end, and six months. The changes in proton density fat fraction (PDFF%) at 5–10 Gy, 10–15 Gy, 15–20 Gy, 20–30 Gy, 30–40 Gy, 40–50 Gy, and > 50 Gy doses were analyzed. Spearman’s rank correlations were performed between peripheral blood cell counts versus the differences in PDFF% at different dose gradients before and after treatment. Results The lymphocytes (ALC) nadirs appeared at the midpoint of radiotherapy, which was only 27.6% of RT-Pre; the white blood cells (WBC), neutrophils (ANC), and platelets (PLT) nadirs appeared at the end of radiotherapy which was 52.4%, 65.1%, and 69.3% of RT-Pre, respectively. At RT mid-point and RT-end, PDFF% increased by 46.8% and 58.5%, respectively. Six months after radiotherapy, PDFF% decreased by 4.71% under 5–30 Gy compared to RT-end, while it still increased by 55.95% compared to RT-Pre. There was a significant positive correlation between PDFF% and ANC nadirs at 5–10 Gy (r = 0.62, P = 0.006), and correlation was observed between PDFF% and ALC nadirs at 5–10 Gy (r = 0.554, P = 0.017). Conclusion MRI IDEAL IQ imaging is a non-invasive approach to evaluate and track the changes of PBM fat content with concurrent chemoradiotherapy for cervical cancer. The limitation of low-dose bone marrow irradiation volume in cervical cancer concurrent chemoradiotherapy should be paid more attention to.
Collapse
Affiliation(s)
- Cong Wang
- Department of Fourth Ward of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaohang Qin
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China
| | - Guanzhong Gong
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China
| | - Lizhen Wang
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China
| | - Ya Su
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China
| | - Yong Yin
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China.
| |
Collapse
|
4
|
Brooks J, Zuro D, Song JY, Madabushi SS, Sanchez JF, Guha C, Kortylewski M, Chen BT, Gupta K, Storme G, Froelich J, Hui SK. Longitudinal Preclinical Imaging Characterizes Extracellular Drug Accumulation After Radiation Therapy in the Healthy and Leukemic Bone Marrow Vascular Microenvironment. Int J Radiat Oncol Biol Phys 2022; 112:951-963. [PMID: 34767936 PMCID: PMC9038217 DOI: 10.1016/j.ijrobp.2021.10.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Recent initial findings suggest that radiation therapy improves blood perfusion and cellular chemotherapy uptake in mice with leukemia. However, the ability of radiation therapy to influence drug accumulation in the extracellular bone marrow tissue is unknown, due in part to a lack of methodology. This study developed longitudinal quantitative multiphoton microscopy (L-QMPM) to characterize the bone marrow vasculature (BMV) and drug accumulation in the extracellular bone marrow tissue before and after radiation therapy in mice bearing leukemia. METHODS AND MATERIALS We developed a longitudinal window implant for L-QMPM imaging of the calvarium BMV before, 2 days after, and 5 days after total body irradiation (TBI). Live time-lapsed images of a fluorescent drug surrogate were used to obtain measurements, including tissue wash-in slope (WIStissue) to measure extracellular drug accumulation. We performed L-QMPM imaging on healthy C57BL/6 (WT) mice, as well as mice bearing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). RESULTS Implants had no effects on calvarium dose, and parameters for wild-type untreated mice were stable during imaging. We observed decreased vessel diameter, vessel blood flow, and WIStissue with the onset of AML and ALL. Two to 10 Gy TBI increased WIStissue and vessel diameter 2 days after radiation therapy in all 3 groups of mice and increased single-vessel blood flow in mice bearing ALL and AML. Increased WIStissue was observed 5 days after 10 Gy TBI or 4 Gy split-dose TBI (2 treatments of 2 Gy spaced 3 days apart). CONCLUSIONS L-QMPM provides stable functional assessments of the BMV. Nonmyeloablative and myeloablative TBI increases extracellular drug accumulation in the leukemic bone marrow 2 to 5 days posttreatment, likely through improved blood perfusion and drug exchange from the BMV to the extravascular tissue. Our data show that neo-adjuvant TBI at doses from 2 Gy to 10 Gy conditions the BMV to improve drug transport to the bone marrow.
Collapse
Affiliation(s)
- Jamison Brooks
- Department of Radiation Oncology, City of Hope, Duarte, California; Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Darren Zuro
- Department of Radiation Oncology, City of Hope, Duarte, California; Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, California
| | | | - James F Sanchez
- Beckman Research Institute of City of Hope, Duarte, California
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope Medical Center, Duarte, California
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine and Southern California Institute for Research and Education, VA Medical Center, North Hills, California; Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Guy Storme
- Department of Radiotherapy, UZ Brussel, Jette, Belgium
| | - Jerry Froelich
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Susanta K Hui
- Department of Radiation Oncology, City of Hope, Duarte, California; Beckman Research Institute of City of Hope, Duarte, California.
| |
Collapse
|
5
|
Feng X, Ma L, Liang H, Liu X, Lei J, Li W, Wang K, Song Y, Wang B, Li G, Li S, Yang C. Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds with Different Pore Sizes. ACS OMEGA 2020; 5:26655-26666. [PMID: 33110992 PMCID: PMC7581231 DOI: 10.1021/acsomega.0c03489] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 05/02/2023]
Abstract
Polyetheretherketone (PEEK) constitutes a preferred alternative material for orthopedic implants owing to its good mechanical properties and biocompatibility. However, the poor osseointegration property of PEEK implants has limited their clinical applications. To address this issue, in this study, we investigated the mechanical and biological properties of fully porous PEEK scaffolds with different pore sizes both in vitro and in vivo. PEEK scaffolds with designed pore sizes of 300, 450, and 600 μm and a porosity of 60% were manufactured via fused deposition modeling (FDM) to explore the optimum pore size. Smooth solid PEEK cylinders (PEEK-S) were used as the reference material. The mechanical, cytocompatibility, proliferative, and osteogenic properties of PEEK scaffolds were characterized in comparison to those of PEEK-S. In vivo dynamic contrast-enhanced magnetic resonance imaging, microcomputed tomography, and histological observation were performed after 4 and 12 weeks of implantation to evaluate the microvascular perfusion and bone formation afforded by the various PEEK implants using a New Zealand white rabbit model with distal femoral condyle defects. Results of in vitro testing supported the good biocompatibility of the porous PEEK scaffolds manufactured via FDM. In particular, the PEEK-450 scaffolds were most beneficial for cell adhesion, proliferation, and osteogenic differentiation. Results of in vivo analysis further indicated that PEEK-450 scaffolds exhibited preferential potential for bone ingrowth and vascular perfusion. Together, our findings support that porous PEEK implants designed with a suitable pore size and fabricated via three-dimensional printing constitute promising alternative biomaterials for bone grafting and tissue engineering applications with marked potential for clinical applications.
Collapse
Affiliation(s)
- Xiaobo Feng
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Liang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department
of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Lei
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqiang Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjin Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Park JA, Kang KJ, Ko IO, Lee KC, Choi BK, Katoch N, Kim JW, Kim HJ, Kwon OI, Woo EJ. In Vivo Measurement of Brain Tissue Response After Irradiation: Comparison of T2 Relaxation, Apparent Diffusion Coefficient, and Electrical Conductivity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2779-2784. [PMID: 31034410 DOI: 10.1109/tmi.2019.2913766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiation therapy (RT) has been widely used as a powerful treatment tool to address cancerous tissues because of its ability to control cell growth. Its ionizing radiation damages the DNA of cancerous tissues, leading to cell death. Medical imaging, however, still has limitations regarding the reliability of its assessment of tissue response and in predicting the treatment effect because of its inability to provide contrast information on the gradual, minute tissue changes after RT. A recently developed magnetic resonance (MR)-based conductivity imaging method may provide direct, highly sensitive information on this tissue response because its contrast mechanism is based on the concentration and mobility of ions in intracellular and extracellular spaces. In this feasibility study, we applied T2-weighted, diffusion-weighted, and electrical conductivity imaging to mouse brain, thus, using the MR imaging to map the tissue response after radiation exposure. To evaluate the degree of response, we measured the T2 relaxation, apparent diffusion coefficient (ADC), and electrical conductivity of brain tissues before and after irradiation. The conductivity images, which showed significantly higher sensitivity than other MR imaging methods, indicated that the contrast is distinguishable in different ways at different areas of the brain. Future studies will focus on verifying these results and the long-term evaluation of conductivity changes using various irradiation methods for clinical applications.
Collapse
|
7
|
Sivananthan A, Shields D, Fisher R, Hou W, Zhang X, Franicola D, Epperly MW, Wipf P, Greenberger JS. Continuous One Year Oral Administration of the Radiation Mitigator, MMS350, after Total-Body Irradiation, Restores Bone Marrow Stromal Cell Proliferative Capacity and Reduces Senescence in Fanconi Anemia (Fanca -/-) Mice. Radiat Res 2018; 191:139-153. [PMID: 30499383 DOI: 10.1667/rr15199.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We quantitated age-related accumulation of senescent cells in irradiated Fanconi anemia (FA) (Fanca-/- mouse cell lines in vitro, and monitored the effect of continuous administration (via drinking water) of the water-soluble radiation mitigator, MMS350, on tissues in vivo over one year after 7.5 Gy total-body irradiation (TBI). Irradiated Fanca-/- mouse bone marrow stromal cell lines showed increased numbers of beta-galactosidase- and p21-positive senescent cells compared to Fanca+/+ cell lines, which was reduced by MMS350. One week after 7.5 Gy TBI, Fanca-/- mice showed increased numbers of senescent cells in spleen compared to Fanca+/+ controls, decreased bone marrow cellularity, failure of explanted bone marrow to proliferate in vitro to form a hematopoietic microenvironment and no detectable single stromal cell cloning capacity. There was no detectable amelioration by MMS350 administration at one week. In contrast, one year post-TBI, Fanca-/- mice demonstrated fewer senescent cells in brain and spleen compared to Fanca+/+ controls. While Fanca-/- mouse bone marrow stromal cells explanted one year post-TBI still failed to proliferate in vitro, continuous oral administration of 400 µ M, MMS350 in drinking water restored explanted stromal cell proliferation. The data indicate that continuous administration of MMS350 modulated several properties of TBI-accelerated aging in Fanca-/- mice as well as control mice, and support further study of MMS350 as a modulator of radiation late effects.
Collapse
Affiliation(s)
- Aranee Sivananthan
- a Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Donna Shields
- a Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Renee Fisher
- a Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Wen Hou
- a Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Xichen Zhang
- a Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Darcy Franicola
- a Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Michael W Epperly
- a Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Peter Wipf
- b Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joel S Greenberger
- a Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| |
Collapse
|