1
|
Shibamoto Y, Takano S, Iida M, Urano M, Ohta K, Oguri M, Murai T. Definitive radiotherapy with stereotactic or IMRT boost with or without radiosensitization strategy for operable breast cancer patients who refuse surgery. JOURNAL OF RADIATION RESEARCH 2022; 63:849-855. [PMID: 35849134 PMCID: PMC9726698 DOI: 10.1093/jrr/rrac047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
For breast cancer (BC) patients who refused surgery, we developed a definitive treatment employing modern sophisticated radiation techniques. Thirty-eight operable BC patients were treated by conventionally fractionated whole-breast (WB) radiotherapy in combination with stereotactic (for primary tumor) or intensity-modulated (for primary tumor with/without regional lymph nodes [LN]) radiotherapy (IMRT) boost. Standard doses were 50 Gy/25 fractions, 21 Gy/3 fractions and 20 Gy/8 fractions, respectively, for the three radiation modalities. Disease stages were 0 (ductal carcinoma in situ [DCIS]) in seven patients, I in 12, II in 16 and III in three. In 26 patients, intratumoral hydrogen peroxide injection or hyperthermia with oral tegafur-gimeracil-oteracil potassium (S-1) was also used to sensitize the tumors to radiation. Hormonal and standard systemic therapy were administered in 25 and 13 patients, respectively. Complete and partial responses were obtained in 19 patients each; in patients with partial response, no further regrowth of the residual mass was observed, except for two patients who developed local recurrence. During a follow-up of 8-160 months (median, 50 months for living patients), two, one and two patients developed local relapse, sub-clavicular node metastasis and distant metastasis, respectively. The 5-year rates for overall, progression-free and local relapse-free survival were 97.2, 90.9 and 93.4%, respectively. Fourteen patients developed Grade 3 radiation dermatitis but all recovered after treatment. In 47%, the affected breast became better-rounded, and the nipple of the irradiated breast became higher by ≥1 cm than the contralateral nipple. Our method might be a treatment option for operable BC patients.
Collapse
Affiliation(s)
- Yuta Shibamoto
- Corresponding author. Narita Memorial Proton Center, 78 Shirakawacho, Toyohashi, 441-8021, Japan. Fax: 0532-33-0023; E-mail:
| | - Seiya Takano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Masato Iida
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Misugi Urano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Kengo Ohta
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Masanosuke Oguri
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, Aichi, 462-8508, Japan
| | - Taro Murai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
2
|
Krisnawan VE, Stanley JA, Schwarz JK, DeNardo DG. Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance. Cancers (Basel) 2020; 12:cancers12102916. [PMID: 33050580 PMCID: PMC7600316 DOI: 10.3390/cancers12102916] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer is multifaceted and consists of more than just a collection of mutated cells. These cancerous cells reside along with other non-mutated cells in an extracellular matrix which together make up the tumor microenvironment or tumor stroma. The composition of the tumor microenvironment plays an integral role in cancer initiation, progression, and response to treatments. In this review, we discuss how the tumor microenvironment regulates the response and resistance to radiation therapy and what targeted agents have been used to combat stromal-mediated radiation resistance. Abstract A tumor is a complex “organ” composed of malignant cancer cells harboring genetic aberrations surrounded by a stroma comprised of non-malignant cells and an extracellular matrix. Considerable evidence has demonstrated that components of the genetically “normal” tumor stroma contribute to tumor progression and resistance to a wide array of treatment modalities, including radiotherapy. Cancer-associated fibroblasts can promote radioresistance through their secreted factors, contact-mediated signaling, downstream pro-survival signaling pathways, immunomodulatory effects, and cancer stem cell-generating role. The extracellular matrix can govern radiation responsiveness by influencing oxygen availability and controlling the stability and bioavailability of growth factors and cytokines. Immune status regarding the presence of pro- and anti-tumor immune cells can regulate how tumors respond to radiation therapy. Furthermore, stromal cells including endothelial cells and adipocytes can modulate radiosensitivity through their roles in angiogenesis and vasculogenesis, and their secreted adipokines, respectively. Thus, to successfully eradicate cancers, it is important to consider how tumor stroma components interact with and regulate the response to radiation. Detailed knowledge of these interactions will help build a preclinical rationale to support the use of stromal-targeting agents in combination with radiotherapy to increase radiosensitivity.
Collapse
Affiliation(s)
- Varintra E. Krisnawan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer A. Stanley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
3
|
Domankevich V, Efrati M, Schmidt M, Glikson E, Mansour F, Shai A, Cohen A, Zilberstein Y, Flaisher E, Galalae R, Kelson I, Keisari Y. RIG-1-Like Receptor Activation Synergizes With Intratumoral Alpha Radiation to Induce Pancreatic Tumor Rejection, Triple-Negative Breast Metastases Clearance, and Antitumor Immune Memory in Mice. Front Oncol 2020; 10:990. [PMID: 32766128 PMCID: PMC7379859 DOI: 10.3389/fonc.2020.00990] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Diffusing alpha-emitting radiation therapy (DaRT) employs intratumoral Ra-224-coated seeds that efficiently destroy solid tumors by slowly releasing alpha-emitting atoms inside the tumor. In immunogenic tumor models, DaRT was shown to activate systemic antitumor immunity. Agonists of the membrane-bound toll-like receptors (TLRs) enhanced these effects and led to tumor rejection. Here, we examined the combination of DaRT with agents that activate a different type of pattern recognition receptors, the cytoplasmatic RIG1-like receptors (RLRs). In response to cytoplasmatic viral dsRNA, RLRs activate an antiviral immune response that includes the elevation of antigen presentation. Thus, it was postulated that in low-immunogenic tumor models, RLR activation in tumor cells prior to the induction of their death by DaRT will be superior compared to TLR activation. Intratumoral cytoplasmatic delivery of the dsRNA mimic polyIC by polyethylenimine (PEI), was used to activate RLR, while polyIC without PEI was used to activate TLR. PolyIC(PEI) prior to DaRT synergistically retarded 4T1 triple-negative breast tumors and metastasis development more efficiently than polyIC and rejected panc02 pancreatic tumors in some of the treated mice. Splenocytes from treated mice, adoptively transferred to naive mice in combination with 4T1 tumor cells, delayed tumor development compared to naïve splenocytes. Low-dose cyclophosphamide, known to reduce T regulatory cell number, enhanced the effect of DaRT and polyIC(PEI) and led to high long-term survival rates under neoadjuvant settings, which confirmed metastasis clearance. The epigenetic drug decitabine, known to activate RLR in low doses, was given intraperitoneally prior to DaRT and caused tumor growth retardation, similar to local polyIC(PEI). The systemic and/or local administration of RLR activators was also tested in the squamous cell carcinoma (SCC) tumor model SQ2, in which a delay in tumor re-challenge development was demonstrated. We conclude that RIG-I-like activation prior to intratumoral alpha radiation may serve as a potent combination technique to reduce both tumor growth and the spread of distant metastases in low-immunogenic and metastatic tumor models.
Collapse
Affiliation(s)
- Vered Domankevich
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Alpha Tau Medical, Tel Aviv-Yafo, Israel
| | - Margalit Efrati
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Alpha Tau Medical, Tel Aviv-Yafo, Israel
| | - Michael Schmidt
- Alpha Tau Medical, Tel Aviv-Yafo, Israel.,Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eran Glikson
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Department of Otolaryngology, Head and Neck Surgery, Sheba Medical Center, Tel HaShomer, Israel
| | - Fairuz Mansour
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Amit Shai
- Alpha Tau Medical, Tel Aviv-Yafo, Israel
| | - Adi Cohen
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Yael Zilberstein
- Sackler Cellular and Molecular Imaging Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | - Razvan Galalae
- MedAustron, Wiener Neustadt, Austria.,Medical Faculty, Christian-Albrechts University, Kiel, Germany
| | - Itzhak Kelson
- Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
4
|
Shibamoto Y, Murai T, Suzuki K, Hashizume C, Ohta K, Yamada Y, Niwa M, Torii A, Shimohira M. Definitive Radiotherapy With SBRT or IMRT Boost for Breast Cancer: Excellent Local Control and Cosmetic Outcome. Technol Cancer Res Treat 2019; 17:1533033818799355. [PMID: 30222523 PMCID: PMC6141921 DOI: 10.1177/1533033818799355] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The gold standard for breast cancer treatment is surgery, but many women may desire to avoid surgery if possible. The purpose of this study was to evaluate whether breast cancer could be cured with modern sophisticated radiation techniques with good cosmetic outcome. We have treated 18 patients with operable breast cancer by conventional whole-breast irradiation followed by stereotactic body radiotherapy (primary tumor only) or intensity-modulated radiotherapy (tumor plus axillary nodes) boost. The planned doses were 50 Gy in 25 fractions, 18 to 25.5 Gy in 3 fractions, and 20 Gy in 8 fractions, respectively, for the 3 modalities. Stereotactic body radiotherapy was delivered with 7 to 9 coplanar and noncoplanar fixed beams, and intensity-modulated radiotherapy was given by tomotherapy. Chemotherapy and/or hormone therapy was used depending on the stage and receptor status. In 9 recent patients, hydrogen peroxide was intratumorally injected twice a week before whole-breast irradiation. All treatments were well tolerable and there were no grade ≥3 toxicities. With a median follow-up period of 35 months (range, 8-120 months), only 1 patient developed local recurrence and 2 patients developed distant metastasis. Overall survival, progression-free survival, and local control rates were 93%, 85%, and 92%, respectively, at 3 years. In 50% of the patients, the irradiated breast became better rounded, and the position of the nipple of the irradiated breast became ≥1 cm higher compared to that of the unirradiated breast. Thus, the treated breasts may be more aesthetically favorable than before irradiation in these patients. This may become a treatment option for patients with operable breast cancer.
Collapse
Affiliation(s)
- Yuta Shibamoto
- 1 Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taro Murai
- 1 Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazushi Suzuki
- 1 Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chisa Hashizume
- 2 Nagoya Radiosurgery Center, Nagoya Kyoritsu Hospital, Nagoya, Japan
| | - Kengo Ohta
- 1 Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuki Yamada
- 1 Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanari Niwa
- 1 Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Torii
- 1 Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masashi Shimohira
- 1 Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|