1
|
Hadi NSA, Stopper H. Micronuclei as genotoxicity endpoint applied in the co-culture of two mammalian cell lines. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 901:503839. [PMID: 39855823 DOI: 10.1016/j.mrgentox.2024.503839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
There has been a shift from traditional animal models towards alternative methods. While 2D cell culture has a decade long tradition, more advances methods like 3D cultures, organoids, and co-culture techniques, which better mimic in vivo conditions, are not yet well established in every research area. Genotoxicity assessment is an integral part of toxicological testing or regulatory approval of pharmaceuticals and chemicals. The micronucleus assay is now a standard method in this context. In this systematic literature review, we aim to describe the state of the art of the application of co-cultures of two mammalian cell lines for micronucleus assessment. We summarized the cell types used, methods for co-culture, disease models and agents, as well as the application of additional genotoxicity endpoints and viability tests. Airway system cells were the most frequent, followed by macrophage-like cells, liver cells, and various others. Co-culture techniques involve either direct physical contact or separation by porous membranes. Within a limited number of investigations using other genotoxicity assays like the comet and γH2AX assays in parallel, the micronucleus assay performed well. Overall, the micronucleus test demonstrating its suitability in disease models and for a more complex substance testing beyond simple 2D cultures, encouraging a more widespread use in co-culture systems in the future.
Collapse
Affiliation(s)
- Naji Said Aboud Hadi
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078 Würzburg, Germany; School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| |
Collapse
|
2
|
Zhang Z, Li K, Hong M. Radiation-Induced Bystander Effect and Cytoplasmic Irradiation Studies with Microbeams. BIOLOGY 2022; 11:biology11070945. [PMID: 36101326 PMCID: PMC9312136 DOI: 10.3390/biology11070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Microbeams are useful tools in studies on non-target effects, such as the radiation-induced bystander effect, and responses related to cytoplasmic irradiation. A micrometer or even sub-micrometer-level beam size enables the precise delivery of radiation energy to a specific target. Here we summarize the observations of the bystander effect and the cytoplasmic irradiation-related effect using different kinds of microbeam irradiators as well as discuss the cellular and molecular mechanisms that are involved in these responses. Non-target effects may increase the detrimental effect caused by radiation, so a more comprehensive knowledge of the process will enable better evaluation of the damage resulting from irradiation. Abstract Although direct damage to nuclear DNA is considered as the major contributing event that leads to radiation-induced effects, accumulating evidence in the past two decades has shown that non-target events, in which cells are not directly irradiated but receive signals from the irradiated cells, or cells irradiated at extranuclear targets, may also contribute to the biological consequences of exposure to ionizing radiation. With a beam diameter at the micrometer or sub-micrometer level, microbeams can precisely deliver radiation, without damaging the surrounding area, or deposit the radiation energy at specific sub-cellular locations within a cell. Such unique features cannot be achieved by other kinds of radiation settings, hence making a microbeam irradiator useful in studies of a radiation-induced bystander effect (RIBE) and cytoplasmic irradiation. Here, studies on RIBE and different responses to cytoplasmic irradiation using microbeams are summarized. Possible mechanisms related to the bystander effect, which include gap-junction intercellular communications and soluble signal molecules as well as factors involved in cytoplasmic irradiation-induced events, are also discussed.
Collapse
Affiliation(s)
- Ziqi Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
| | - Kui Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-85280901
| |
Collapse
|
3
|
Autsavapromporn N, Kobayashi A, Liu C, Jaikang C, Tengku Ahmad TA, Oikawa M, Konishi T. Hypoxia and Proton microbeam: Role of Gap Junction Intercellular Communication in Inducing Bystander Responses on Human Lung Cancer Cells and Normal Cells. Radiat Res 2022; 197:122-130. [PMID: 34634126 DOI: 10.1667/rade-21-00112.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander effect (RIBE) has been identified as an important contributing factor to tumor resistance and normal tissue damage. However, the RIBE in cancer and normal cells under hypoxia remain unclear. In this study, confluent A549 cancer and WI-38 normal cells were subjected to condition of hypoxia or normoxia, before exposure to high-LET protons microbeam. After 6 h incubation, cells were harvested and assayed for colony formation, micronucleus formation, chromosome aberration and western blotting. Our results show that there were differences of RIBE in bystander A549 and WI-38 cells under hypoxia and normoxia. The differences were also observed in the roles of HIF-1α expression in bystander A549 and WI-38 cells under both conditions. Furthermore, inhibition of gap junction intercellular communication (GJIC) showed a decrease in toxicity of hypoxia-treated bystander A549 cells, but increased in bystander WI-38 cells. These findings clearly support that GJIC protection of bystander normal cells from toxicity while enhancing in bystander cancer cells. Together, the data show a promising strategy for high-LET radiation in designing an entire new line of drugs, either increase or restore GJIC in bystander cancer cells which in turn leads to enhancement of radiation accuracy for treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Alisa Kobayashi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Cuihua Liu
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Masakazu Oikawa
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Ilyas AO, Alam MK, Musah JD, Yang M, Lam YW, Roy VAL, Lau C. Investigation on the Direct and Bystander Effects in HeLa Cells Exposed to Very Low α-Radiation Using Electrical Impedance Measurement. ACS OMEGA 2021; 6:13995-14003. [PMID: 34124424 PMCID: PMC8190804 DOI: 10.1021/acsomega.0c05888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The impact of radiation-induced bystander effect (RIBE) is still not well understood in radiotherapy. RIBEs are biological effects expressed by nonirradiated cells near or far from the irradiated cells. Most radiological studies on cancer cells have been based on biochemical characterization. However, biophysical investigation with label-free techniques to analyze and compare the direct irradiation effect and RIBE has lagged. In this work, we employed an electrical cell-indium tin oxide (ITO) substrate impedance system (ECIIS) as a bioimpedance sensor to evaluate the HeLa cells' response. The bioimpedance of untreated/nonirradiated HeLa (N-HeLa) cells, α-particle (Am-241)-irradiated HeLa (I-HeLa) cells, and bystander HeLa (B-HeLa) cells exposed to media from I-HeLa cells was monitored with a sampling interval of 8 s over a period of 24 h. Also, we imaged the cells at times where impedance changes were observed. Different radiation doses (0.5 cGy, 1.2 cGy, and 1.7 cGy) were used to investigate I-HeLa and B-HeLa cells' radiation-dose-dependence. By analyzing the changes in absolute impedance and cell size/number with time, compared to N-HeLa cells, B-HeLa cells mimicked the I-HeLa cells' damage and modification of proliferation rate. Contrary to the irradiated cells, the bystander cells' damage rate and proliferation rate enhancements have an inverse radiation-dose-response. Also, we report multiple RIBEs in HeLa cells in a single measurement and provide crucial insights into the RIBE mechanism without any labeling procedure. Unambiguously, our results have shown that the time-dependent control of RIBE is important during α-radiation-based radiotherapy of HeLa cells.
Collapse
Affiliation(s)
- AbdulMojeed O. Ilyas
- Department
of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department
of Physics, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 3600001, Nigeria
| | - Md Kowsar Alam
- Department
of Biomedical Sciences, City University
of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department
of Physics, University of Chittagong, Chittagong 4331, Bangladesh
| | - Jamal-Deen Musah
- Department
of Material Science and Engineering and State Key Laboratory of Terahertz
and Millimeter Waves, City University of
Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Mengsu Yang
- Department
of Biomedical Sciences, City University
of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Yun Wah Lam
- Department
of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Vellaisamy A. L. Roy
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Condon Lau
- Department
of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
5
|
Yang Z, Zhang Q, Luo H, Shao L, Liu R, Kong Y, Zhao X, Geng Y, Li C, Wang X. Effect of Carbon Ion Radiation Induces Bystander Effect on Metastasis of A549 Cells and Metabonomic Correlation Analysis. Front Oncol 2021; 10:601620. [PMID: 33738244 PMCID: PMC7962605 DOI: 10.3389/fonc.2020.601620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/31/2020] [Indexed: 01/18/2023] Open
Abstract
Objective To analyze the effect of carbon ion (12C6+) radiation may induce bystander effect on A549 cell metastasis and metabonomics. Methods A549 cell was irradiated with carbon ion to establish the clone survival model and the transwell matrix assay was applied to measure the effect of carbon ion on cell viability, migration, and invasion, respectively. Normal human embryonic lung fibroblasts (WI-38) were irradiated with carbon ions of 0 and 2 Gy and then transferred to A549 cell co-culture medium for 24 h. The migration and invasion of A549 cells were detected by the Transwell chamber. The analysis of metabonomic information in transfer medium by liquid phase mass spectrometry (LC-MS), The differential molecules were obtained by principal pomponent analysis (PCA) and the target proteins of significant differences (p = 1.7 × 10−3) obtained by combining with the STICH database. KEGG pathway was used to analyze the enrichment of the target protein pathway. Results Compared with 0 Gy, the colony formation, migration, and invasion of A549 cells were significantly inhibited by carbon ion 2 and 4 Gy irradiation, while the inhibitory effect was not significant after 1 Gy irradiation. Compared with 0 Gy, the culture medium 24 h after carbon ion 2 Gy irradiation significantly inhibited the metastasis of tumor cells (p = 0.03). LC-MS analysis showed that 23 differential metabolites were obtained in the cell culture medium 24 h after carbon ion 0 and 2 Gy irradiation (9 up-regulated and 14 down-regulated). Among them, two were up-regulated and two down-regulated (p = 2.9 × 10−3). 41 target proteins were corresponding to these four differential molecules. Through the analysis of the KEGG signal pathway, it was found that these target molecules were mainly enriched in purine metabolism, tyrosine metabolism, cysteine and methionine metabolism, peroxisome, and carbon metabolism. Neuroactive ligand-receptor interaction, calcium signaling pathway, arachidonic acid metabolism, and Fc epsilon RI signaling pathway. Conclusion The bystander effect induced by 2 Gy carbon ion radiation inhibits the metastasis of tumor cells, which indicates that carbon ions may change the metabolites of irradiated cells, so that it may indirectly affect the metabolism of tumor cell growth microenvironment, thus inhibiting the metastasis of malignant tumor cells.
Collapse
Affiliation(s)
- Zhen Yang
- The Basic Medical College of Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lihua Shao
- Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yarong Kong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xueshan Zhao
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yichao Geng
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chengcheng Li
- Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaohu Wang
- The Basic Medical College of Lanzhou University, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Department of Oncology, Lanzhou Heavy Ion Hospital, Lanzhou, China.,Department of Oncology, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Hu S, Shao C. Research progress of radiation induced bystander and abscopal effects in normal tissue. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
7
|
Dong C, Tu W, He M, Fu J, Kobayashi A, Konishi T, Shao C. Role of Endoplasmic Reticulum and Mitochondrion in Proton Microbeam Radiation-Induced Bystander Effect. Radiat Res 2019; 193:63-72. [PMID: 31714866 DOI: 10.1667/rr15469.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that mitochondria and the endoplasmic reticulum (ER) play important roles in radiation response, but their functions in radiation-induced bystander effect (RIBE) are largely unclear. In this study, we found that when a small portion of cells in a population of human lung fibroblast MRC-5 cells were precisely irradiated through either the nuclei or cytoplasm with counted microbeam protons, the yield of micronuclei (MN) and the levels of intracellular reactive oxygen species (ROS) in nonirradiated cells neighboring irradiated cells were significantly increased. Mito/ER-tracker staining demonstrated that the mitochondria were clearly activated after nuclear irradiation and ER mass approached a higher level after cytoplasmic irradiation. Moreover, the radiation-induced ROS was diminished by rotenone, an inhibitor of mitochondria activation, but it was not influenced by siRNA interference of BiP, an ER regulation protein. While for nuclear irradiation, rotenone-enhanced radiation-induced ER expression, and BiP siRNA eliminated radiation-induced activation of mitochondria, these phenomena were not observed for cytoplasmic irradiation. Bystander MN was reduced by rotenone but enhanced by BiP siRNA. When the cells were treated with both rotenone and BiP siRNA, the MN yield was reduced for nuclear irradiation but was enhanced for cytoplasmic irradiation. Our results suggest that the organelles of mitochondria and ER have different roles in RIBE with respect to nuclear and cytoplasmic irradiation, and the function of ER is a prerequisite for mitochondrial activation.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Wenzhi Tu
- The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Jiamei Fu
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Alisa Kobayashi
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences
| | - Teruaki Konishi
- Department of Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba 263-8555, Japan
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Kanagaraj K, Rajan V, Pandey BN, Thayalan K, Venkatachalam P. Primary and secondary bystander effect and genomic instability in cells exposed to high and low linear energy transfer radiations. Int J Radiat Biol 2019; 95:1648-1658. [PMID: 31486717 DOI: 10.1080/09553002.2019.1665208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose: Non-Targeted effects (NTE), such as bystander effect (BE) and genomic instability (GI) challenge central dogma of radiation biology. Moreover, there is a need to understand its universality in different type of cells and radiation quality.Materials and method: To study BE (primary and secondary) and GI Human adult dermal fibroblast (HADF) and peripheral blood lymphocytes (PBL) were exposed to low fluence of 241Am alpha (α) particle and 6 MV X-ray. The BE was carried out by means of co-culture methodology after exposing the cells to both types of radiation and damage was measured using micronucleus assay (MN) and chromosomal aberration assay (CA) in the p1 cells while the GI was followed up in their progeny.Results: A dose-dependent increase in DNA damages (MN and CA) was observed in directly irradiated and bystander cells. The magnitude of BE was higher (6 fold) in cells co-cultured with the α-irradiated cells than that of with X-irradiated cells. Cross exposure of both cell types confirms that radiation induced BE is cell type dependent. In addition, induced DNA damage persisted for a longer population doubling in α-particle irradiated cells.Conclusion: This work adds evidence to secondary bystander response generated from primary bystander normal cells and its dependence to radiation quality.
Collapse
Affiliation(s)
- K Kanagaraj
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - V Rajan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Badri N Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - K Thayalan
- Department of Radiation oncology, Kamakshi Memorial Hospital, Chennai, India
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| |
Collapse
|