1
|
Mao H, Li J, Huang C, Li Z, Ma X, Jiang D, Zhang X, Wang T, Cheng B, Wang R, Wang J, Cheng Y. Unveiling Cellular Responses and Underlying Immune Effects Induced by Boron Neutron Capture Therapy. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00417-1. [PMID: 40311703 DOI: 10.1016/j.ijrobp.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
Boron neutron capture therapy (BNCT) is an emerging modality for cancer treatment. Although its concept was proposed in the last century, progress has been relatively slow because limitations in neutron source technology and boron compounds. In recent years, with the increased availability of neutron devices and improvements in boron compounds, the radiobiological effects of BNCT have been investigated more deeply, leading to a surge of research findings in the field. Therefore, a systematic review of the current status of BNCT is particularly warranted. In this review, we integrate the latest studies to provide a comprehensive and detailed description of the direct and indirect mechanisms by which BNCT induces cell killing, as well as the subsequent cellular responses. More importantly, we propose that BNCT exhibits a stronger immunologic foundation and immunogenicity than traditional radiation therapy, indicating significant potential for its combined application with immunotherapy. These results offer a robust theoretical foundation for the future clinical use of BNCT and indicate that continued investigation of BNCT in conjunction with immunotherapy may pave the way for more advanced cancer treatment strategies.
Collapse
Affiliation(s)
- Hongyuan Mao
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinyue Li
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenhan Huang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zerun Li
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyue Ma
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dizhi Jiang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyu Zhang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianzi Wang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Cheng
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Ruiqing Wang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jianbo Wang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yufeng Cheng
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Crintea A, Motofelea AC, Șovrea AS, Constantin AM, Crivii CB, Carpa R, Duțu AG. Dendrimers: Advancements and Potential Applications in Cancer Diagnosis and Treatment-An Overview. Pharmaceutics 2023; 15:pharmaceutics15051406. [PMID: 37242648 DOI: 10.3390/pharmaceutics15051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and the main treatment methods for this condition are surgery, chemotherapy, and radiotherapy. These treatment methods are invasive and can cause severe adverse reactions among organisms, so nanomaterials are increasingly used as structures for anticancer therapies. Dendrimers are a type of nanomaterial with unique properties, and their production can be controlled to obtain compounds with the desired characteristics. These polymeric molecules are used in cancer diagnosis and treatment through the targeted distribution of some pharmacological substances. Dendrimers have the ability to fulfill several objectives in anticancer therapy simultaneously, such as targeting tumor cells so that healthy tissue is not affected, controlling the release of anticancer agents in the tumor microenvironment, and combining anticancer strategies based on the administration of anticancer molecules to potentiate their effect through photothermal therapy or photodynamic therapy. The purpose of this review is to summarize and highlight the possible uses of dendrimers regarding the diagnosis and treatment of oncological conditions.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Alina Simona Șovrea
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Alina Gabriela Duțu
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Mechetin GV, Zharkov DO. DNA Damage Response and Repair in Boron Neutron Capture Therapy. Genes (Basel) 2023; 14:127. [PMID: 36672868 PMCID: PMC9859301 DOI: 10.3390/genes14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an approach to the radiotherapy of solid tumors that was first outlined in the 1930s but has attracted considerable attention recently with the advent of a new generation of neutron sources. In BNCT, tumor cells accumulate 10B atoms that react with epithermal neutrons, producing energetic α particles and 7Li atoms that damage the cell's genome. The damage inflicted by BNCT appears not to be easily repairable and is thus lethal for the cell; however, the molecular events underlying the action of BNCT remain largely unaddressed. In this review, the chemistry of DNA damage during BNCT is outlined, the major mechanisms of DNA break sensing and repair are summarized, and the specifics of the repair of BNCT-induced DNA lesions are discussed.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Kiseleva V, Gordon K, Vishnyakova P, Gantsova E, Elchaninov A, Fatkhudinov T. Particle Therapy: Clinical Applications and Biological Effects. Life (Basel) 2022; 12:2071. [PMID: 36556436 PMCID: PMC9785772 DOI: 10.3390/life12122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Particle therapy is a developing area of radiotherapy, mostly involving the use of protons, neutrons and carbon ions for cancer treatment. The reduction of side effects on healthy tissues in the peritumoral area is an important advantage of particle therapy. In this review, we analyze state-of-the-art particle therapy, as compared to conventional photon therapy, to identify clinical benefits and specify the mechanisms of action on tumor cells. Systematization of published data on particle therapy confirms its successful application in a wide range of cancers and reveals a variety of biological effects which manifest at the molecular level and produce the particle therapy-specific molecular signatures. Given the rapid progress in the field, the use of particle therapy holds great promise for the near future.
Collapse
Affiliation(s)
- Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Konstantin Gordon
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A. Tsyb Medical Radiological Research Center, 249031 Obninsk, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Gantsova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|
5
|
Kondo N. DNA damage and biological responses induced by Boron Neutron Capture Therapy (BNCT). Enzymes 2022; 51:65-78. [PMID: 36336409 DOI: 10.1016/bs.enz.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Boron Neutron Capture Therapy (BNCT) is a tumor cell selective high LET (linear energy transfer) particle beam therapy. The patient is administrated a boron (10B) compound via intravenous injection or infusion, and when 10B is sufficiently accumulated in the tumor, neutron beams containing epithermal neutrons as the main component are irradiated. Epithermal neutrons lose energy in the body and become thermal neutrons. The captured 10B undergoes a (n, α) reaction with thermal neutrons, and the resulting α particles and 7Li nuclei have short ranges of 9-10μm and 4-5μm, respectively, and do not reach the surrounding cells in normal tissues. Therefore, these high LET-heavy charged particles can selectively kill cancer cells. The cell-killing effect of these heavy charged particles is thought to be triggered by DNA damage. It is known that DNA damage caused by heavy charged particles is more serious and difficult to repair than DNA damage caused by Low LET radiation such as X-rays and γ-rays. This review focuses on DNA damage, e.g., DNA strand breaks and DNA damage repair caused by BNCT and describes the resulting biological response.
Collapse
Affiliation(s)
- Natsuko Kondo
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan.
| |
Collapse
|
6
|
Importance of radiobiological studies for the advancement of boron neutron capture therapy (BNCT). Expert Rev Mol Med 2022; 24:e14. [PMID: 35357286 DOI: 10.1017/erm.2022.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.
Collapse
|
7
|
Dymova MA, Taskaev SY, Richter VA, Kuligina EV. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun (Lond) 2020; 40:406-421. [PMID: 32805063 PMCID: PMC7494062 DOI: 10.1002/cac2.12089] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/09/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new accelerators has given a new impetus to the development of new drugs and treatment technologies using boron neutron capture therapy (BNCT). We analyzed the current status and future directions of BNCT for cancer treatment, as well as the main issues related to its introduction. This review highlights the principles of BNCT and the key milestones in its development: new boron delivery drugs and different types of charged particle accelerators are described; several important aspects of BNCT implementation are discussed. BCNT could be used alone or in combination with chemotherapy and radiotherapy, and it is evaluated in light of the outlined issues. For the speedy implementation of BCNT in medical practice, it is necessary to develop more selective boron delivery agents and to generate an epithermal neutron beam with definite characteristics. Pharmacological companies and research laboratories should have access to accelerators for large-scale screening of new, more specific boron delivery agents.
Collapse
Affiliation(s)
- Mayya Alexandrovna Dymova
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Sergey Yurjevich Taskaev
- Budker Institute of Nuclear PhysicsSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 11Novosibirsk630090Russia
- Laboratory of Boron Neutron Capture TherapyNovosibirsk State UniversityPirogova str. 1Novosibirsk630090Russia
| | - Vladimir Alexandrovich Richter
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| | - Elena Vladimirovna Kuligina
- Laboratory of BiotechnologyInstitute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesLavrentjeva Av. 8Novosibirsk630090Russia
| |
Collapse
|