1
|
Al-Rubaiey S, Senger C, Bukatz J, Krantchev K, Janas A, Eitner C, Nieminen-Kelhä M, Brandenburg S, Zips D, Vajkoczy P, Acker G. Determinants of cerebral radionecrosis in animal models: A systematic review. Radiother Oncol 2024; 199:110444. [PMID: 39067705 DOI: 10.1016/j.radonc.2024.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Radionecrosis is a common complication in radiation oncology, while mechanisms and risk factors have yet to be fully explored. We therefore conducted a systematic review to understand the pathogenesis and identify factors that significantly affect the development. METHODS We performed a systematic literature search based on the PRISMA guidelines using PubMed, Ovid, and Web of Science databases. The complete search strategy can be found as a preregistered protocol on PROSPERO (CRD42023361662). RESULTS We included 83 studies, most involving healthy animals (n = 72, 86.75 %). High doses of hemispherical irradiation of 30 Gy in rats and 50 Gy in mice led repeatedly to radionecrosis among different studies and set-ups. Higher dose and larger irradiated volume were associated with earlier onset. Fractionated schedules showed limited effectiveness in the prevention of radionecrosis. Distinct anatomical brain structures respond to irradiation in various ways. White matter appears to be more vulnerable than gray matter. Younger age, more evolved animal species, and genetic background were also significant factors, whereas sex was irrelevant. Only 13.25 % of the studies were performed on primary brain tumor bearing animals, no studies on brain metastases are currently available. CONCLUSION This systematic review identified various factors that significantly affect the induction of radionecrosis. The current state of research neglects the utilization of animal models of brain tumors, even though patients with brain malignancies constitute the largest group receiving brain irradiation. This latter aspect should be primarily addressed when developing an experimental radionecrosis model for translational implementation.
Collapse
Affiliation(s)
- Sanaria Al-Rubaiey
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Carolin Senger
- Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Jan Bukatz
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Kiril Krantchev
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Anastasia Janas
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Chiara Eitner
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Susan Brandenburg
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Daniel Zips
- Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Güliz Acker
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| |
Collapse
|
2
|
McIlrath DR, Roach E, Porro G, Perez-Torres CJ. Feasibility of quantification of murine radiation-induced pulmonary fibrosis with microCT imaging. JOURNAL OF RADIATION RESEARCH 2021:rrab096. [PMID: 34642761 DOI: 10.1093/jrr/rrab096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Mouse models of radiation-induced pulmonary fibrosis (RIPF) are commonly produced to find novel treatments for the condition. However, current models are not always assesed in a clinically-relevant manner. Clinics diagnose and track RIPF through CT scanning rather than observing time-to-death. An established timeline of RIPF lesion development in a murine model is therefore needed. Male C57Bl/6 mice (n=43) were irradiated with a single dose of 20 Gy to the whole thoracic area delivered by an 320 kV X-Rad cabinet irradiator. CT was performed with respitory gating at two week time points and developed images to identify RIPF pathology in vivo. Confirmation of CT findings was performed via histology on the lungs using Mason's trichrome staining. CT images were segmented to quantify fibrosis and lung which are then summed to give total volume. The fibrotic fraction was calculated upto 26 weeks. Significant increases in fibrotic fraction compared to the baseline microCT scans for each individual mouse acquired prior to the 20 Gy exposure are seen beginning at 10-12 weeks. Tidal lung volume was also calculated by subtracting expiration scan volumes from inspiration scan volumes. However the decrease in tidal lung volume over time was not statisitically significant. Computed tomography (CT) imaging was used to quantify the increase in fibrosis over time in our mouse model. However, the results were highly variable among individual mice after irradiation. CT imaging should be used in future studies looking at treatments for RIPF as it allows for measuring the extent of pathology non-invasively in a clinically-relevant manner.
Collapse
Affiliation(s)
- Daniel R McIlrath
- Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City OK 73104, USA
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth Roach
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Gianna Porro
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Suckert T, Beyreuther E, Müller J, Azadegan B, Meinhardt M, Raschke F, Bodenstein E, von Neubeck C, Lühr A, Krause M, Dietrich A. Late Side Effects in Normal Mouse Brain Tissue After Proton Irradiation. Front Oncol 2021; 10:598360. [PMID: 33520710 PMCID: PMC7842140 DOI: 10.3389/fonc.2020.598360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Radiation-induced late side effects such as cognitive decline and normal tissue complications can severely affect quality of life and outcome in long-term survivors of brain tumors. Proton therapy offers a favorable depth-dose deposition with the potential to spare tumor-surrounding normal tissue, thus potentially reducing such side effects. In this study, we describe a preclinical model to reveal underlying biological mechanisms caused by precise high-dose proton irradiation of a brain subvolume. We studied the dose- and time-dependent radiation response of mouse brain tissue, using a high-precision image-guided proton irradiation setup for small animals established at the University Proton Therapy Dresden (UPTD). The right hippocampal area of ten C57BL/6 and ten C3H/He mice was irradiated. Both strains contained four groups (nirradiated = 3, ncontrol = 1) treated with increasing doses (0 Gy, 45 Gy, 65 Gy or 85 Gy and 0 Gy, 40 Gy, 60 Gy or 80 Gy, respectively). Follow-up examinations were performed for up to six months, including longitudinal monitoring of general health status and regular contrast-enhanced magnetic resonance imaging (MRI) of mouse brains. These findings were related to comprehensive histological analysis. In all mice of the highest dose group, first symptoms of blood-brain barrier (BBB) damage appeared one week after irradiation, while a dose-dependent delay in onset was observed for lower doses. MRI contrast agent leakage occurred in the irradiated brain areas and was progressive in the higher dose groups. Mouse health status and survival corresponded to the extent of contrast agent leakage. Histological analysis revealed tissue changes such as vessel abnormalities, gliosis, and granule cell dispersion, which also partly affected the non-irradiated contralateral hippocampus in the higher dose groups. All observed effects depended strongly on the prescribed radiation dose and the outcome, i.e. survival, image changes, and tissue alterations, were very consistent within an experimental dose cohort. The derived dose–response model will determine endpoint-specific dose levels for future experiments and may support generating clinical hypotheses on brain toxicity after proton therapy.
Collapse
Affiliation(s)
- Theresa Suckert
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Johannes Müller
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Behnam Azadegan
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Physics, Hakim Sabzevari University, Sabzevar, Iran
| | - Matthias Meinhardt
- Neuropathology, Institute of Pathology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Felix Raschke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Elisabeth Bodenstein
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Armin Lühr
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,Department of Medical Physics and Radiotherapy, Faculty of Physics, TU Dortmund University, Dortmund, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Antje Dietrich
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| |
Collapse
|
4
|
Boria AJ, Perez-Torres CJ. Impact of mouse strain and sex when modeling radiation necrosis. Radiat Oncol 2020; 15:141. [PMID: 32493371 PMCID: PMC7268332 DOI: 10.1186/s13014-020-01585-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Murine models are among the most common type of preclinical animal models used to study the human condition, but a wide selection of different mice is currently in use with these differences potentially compromising study results and impairing the ability to reconcile interstudy results. Our goal was to determine how the strain and sex of the mice selection would affect the development of radiation necrosis in our murine model of radiation-induced cerebral necrosis. Methods We generated this model by using a preclinical irradiator to irradiate a sub-hemispheric portion of the brain of mice with single-fraction doses of 80 Gy. Eight possible combinations of mice made up of two different with two substrains each (BALB/cN, BALB/cJ, C57BL/6 N, and C57BL/6 J) and both sexes were irradiated in this study. Radiation necrosis development was tracked up to 8 weeks with a 7 T Bruker MRI utilizing T2-weighted and post-contrast T1-weighted imaging. MRI results were compared to and validated with the use of histology which utilized a scale from 0 to 3 in ascending order of damage. Results Both time post-irradiation and strain (BALB/c vs C57BL/6) were significant factors affecting radiation necrosis development. Sex was in general not a statistically significant parameter in terms of radiation necrosis development. Conclusion Mouse strain thus needs to be considered when evaluating the results of necrosis models. However, sex does not appear to be a variable needing major consideration.
Collapse
Affiliation(s)
- Andrew J Boria
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Hampton Hall 1263A, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Hampton Hall 1263A, West Lafayette, IN, USA. .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Boria AJ, Perez-Torres CJ. Minimal difference between fractionated and single-fraction exposure in a murine model of radiation necrosis. Radiat Oncol 2019; 14:144. [PMID: 31409408 PMCID: PMC6691651 DOI: 10.1186/s13014-019-1356-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/07/2019] [Indexed: 11/15/2022] Open
Abstract
Purpose Despite the success of fractionation in clinical practice to spare healthy tissue, it remains common for mouse models used to study the efficacy of radiation therapy to use minimal or no fractionation. The goal of our study was to create a fractionated mouse model of radiation necrosis that we could compare to our single fraction model. Methods Precision X-Ray’s X-Rad 320 cabinet irradiator was used to irradiate the cerebrum of mice with four different fractionation schemes, while a 7 T Bruker magnetic resonance imaging (MRI) scanner using T2 and post-contrast T1 imaging was used to track the development of radiation necrosis over the span of six weeks. Results All four fractionation schemes with single fraction equivalent doses (SFED) less than 50 Gy for the commonly accepted alpha/beta ratio (α/β) value of 2–3 Gy produced radiation necrosis comparable to what would be achieved with single fraction doses of 80 and 90 Gy. This is surprising when previous work using single fractions of 50 Gy produced no visible radiation necrosis, with the results of this study showing fractionation not sparing brain tissue as much as expected. Conclusion Further interpretation of these results must take into consideration other studies which have shown a lack of sparing when fractionation has been incorporated, as well as consider factors such as the use of large doses per fraction, the time between fractions, and the limitations of using a murine model to analyze the human condition.
Collapse
Affiliation(s)
- Andrew J Boria
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Hampton Hall 1263A, West Lafayette, IN, 47907, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Hampton Hall 1263A, West Lafayette, IN, 47907, USA. .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|