1
|
Yamada Y, Imaoka T, Iwasaki T, Kobayashi J, Misumi M, Sakai K, Sugihara T, Suzuki K, Tauchi H, Yasuda H, Yoshinaga S, Sasatani M, Tanaka S, Doi K, Tomita M, Iizuka D, Kakinuma S, Sasaki M, Kai M. Establishment and activity of the planning and acting network for low dose radiation research in Japan (PLANET): 2016-2023. JOURNAL OF RADIATION RESEARCH 2024; 65:561-574. [PMID: 39007844 PMCID: PMC11420843 DOI: 10.1093/jrr/rrae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Indexed: 07/16/2024]
Abstract
The Planning and Acting Network for Low Dose Radiation Research in Japan (PLANET) was established in 2017 in response to the need for an all-Japan network of experts. It serves as an academic platform to propose strategies and facilitate collaboration to improve quantitative estimation of health risks from ionizing radiation at low-doses and low-dose-rates. PLANET established Working Group 1 (Dose-Rate Effects in Animal Experiments) to consolidate findings from animal experiments on dose-rate effects in carcinogenesis. Considering international trends in this field as well as the situation in Japan, PLANET updated its priority research areas for Japanese low-dose radiation research in 2023 to include (i) characterization of low-dose and low-dose-rate radiation risk, (ii) factors to be considered for individualization of radiation risk, (iii) biological mechanisms of low-dose and low-dose-rate radiation effects and (iv) integration of epidemiology and biology. In this context, PLANET established Working Group 2 (Dose and Dose-Rate Mapping for Radiation Risk Studies) to identify the range of doses and dose rates at which observable effects on different endpoints have been reported; Working Group 3 (Species- and Organ-Specific Dose-Rate Effects) to consider the relevance of stem cell dynamics in radiation carcinogenesis of different species and organs; and Working Group 4 (Research Mapping for Radiation-Related Carcinogenesis) to sort out relevant studies, including those on non-mutagenic effects, and to identify priority research areas. These PLANET activities will be used to improve the risk assessment and to contribute to the revision of the next main recommendations of the International Commission on Radiological Protection.
Collapse
Affiliation(s)
- Yutaka Yamada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyasu Iwasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Junya Kobayashi
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Kazuo Sakai
- Tokyo Healthcare University, 2-5-1 Higashiaoka, Meguro-ku, Tokyo 152-8558, Japan
| | - Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Shinji Yoshinaga
- Department of Environmetrics and Biometrics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanori Tomita
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Michiya Sasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| |
Collapse
|
2
|
Tanaka IB. EXPERIMENTAL STUDIES AT THE IES ON THE BIOLOGICAL EFFECTS OF CHRONIC LOW DOSE-RATE RADIATION EXPOSURE IN MICE. RADIATION PROTECTION DOSIMETRY 2022; 198:985-989. [PMID: 36083746 DOI: 10.1093/rpd/ncac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/15/2023]
Abstract
Research in the Department of Radiobiology at the Institute for Environmental Sciences (IES) has focused mainly on the biological effects of long-term low dose-rate radiation exposure on mice since its establishment 30 y ago. The IES has exposed thousands of mice of various strains, to gamma-rays, mostly chronically, at low dose-rates of 0.05, 1, 20 or 100 mGy/d, at medium dose-rates of 200 or 400 mGy/d or at acute high dose-rates of 0.7-0.9 Gy/min. The dose-rate 0.05 mGy/d is comparable with the dose limit for radiation workers of 100 mSv/5 y. The results will be presented based on the parameters examined at various endpoints such as life span, neoplasm (cancer incidence), chromosome aberrations frequencies, alterations in mRNA levels, tumour transplantability and developmental abnormalities after in utero exposures. The results from research collaborations with universities and institutions both domestic (within Japan) and international will be presented. Lastly, an outline of experiments (e.g. juvenile exposure, low dose tritium exposures) and projects (e.g. radiobiology archives) currently in progress and future research perspectives will be described.
Collapse
Affiliation(s)
- Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| |
Collapse
|
3
|
Wang B, Tanaka K, Katsube T, Maruyama K, Ninomiya Y, Varès G, Liu C, Hirakawa H, Murakami M, Fardous Z, Sultana N, Fujita K, Fujimori A, Nakajima T, Nenoi M. Reduced High-Dose Radiation-Induced Residual Genotoxic Damage by Induction of Radioadaptive Response and Prophylactic Mild Dietary Restriction in Mice. Dose Response 2021; 19:1559325820982166. [PMID: 33628149 PMCID: PMC7883164 DOI: 10.1177/1559325820982166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Radioadaptive response (RAR) describes a phenomenon in a variety of in vitro and in vivo systems that a low-dose of priming ionizing radiation (IR) reduces detrimental effects of a subsequent challenge IR at higher doses. Among in vivo investigations, studies using the mouse RAR model (Yonezawa Effect) showed that RAR could significantly extenuate high-dose IR-induced detrimental effects such as decrease of hematopoietic stem cells and progenitor cells, acute radiation hematopoietic syndrome, genotoxicity and genomic instability. Meanwhile, it has been demonstrated that diet intervention has a great impact on health, and dietary restriction shows beneficial effects on numerous diseases in animal models. In this work, by using the mouse RAR model and mild dietary restriction (MDR), we confirmed that combination of RAR and MDR could more efficiently reduce radiogenotoxic damage without significant change of the RAR phenotype. These findings suggested that MDR may share some common pathways with RAR to activate mechanisms consequently resulting in suppression of genotoxicity. As MDR could also increase resistance to chemotherapy and radiotherapy in normal cells, we propose that combination of MDR, RAR, and other cancer treatments (i.e., chemotherapy and radiotherapy) represent a potential strategy to increase the treatment efficacy and prevent IR risk in humans.
Collapse
Affiliation(s)
- Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Guillaume Varès
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirokazu Hirakawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masahiro Murakami
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Zeenath Fardous
- Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, People's Republic of Bangladesh
| | - Nahida Sultana
- Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka, People's Republic of Bangladesh
| | - Kazuko Fujita
- Department of Pathology, School of Medicine, Toho University, Tokyo, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuo Nakajima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mitsuru Nenoi
- Department of Safety Administration, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
4
|
Paunesku T, Stevanović A, Popović J, Woloschak GE. Effects of low dose and low dose rate low linear energy transfer radiation on animals - review of recent studies relevant for carcinogenesis. Int J Radiat Biol 2021; 97:757-768. [PMID: 33289582 PMCID: PMC9216178 DOI: 10.1080/09553002.2020.1859155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Purpose: Carcinogenic effects of radiation are often assumed to be universally understood, more often than, for example, carcinogenic effects of many different chemicals. This in turn leads to an assumption that any dose of radiation, delivered at any dose rate, poses a serious health challenge. This remains an issue of dispute and low dose radiation research is focused on understanding whether these exposures contribute to cancer incidence. This review is focused on the low linear energy transfer (low LET) radiation exposures for which the data is the most abundant in recent years. Materials and methods: Review of the literature between 2008 and today, highlighting some of the most diverse studies in low dose research. Results: Low dose and low dose rate, low LET ionizing radiation animal studies suggest that the effects of exposure very much depend on animal genotype and health status.Conclusions: Only the integration of all of the data from different models and studies will lead to a fuller understanding of low dose radiation effects. Therefore, we hope to see an increase in international archival efforts and exchange of raw data information opening the possibilities for new types of meta analyses.
Collapse
Affiliation(s)
- Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Aleksandra Stevanović
- Multidisciplinary Studies of History and Philosophy of Natural Sciences and Technology, University of Belgrade, Belgrade, Serbia
| | - Jelena Popović
- Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Vaiserman A, Cuttler JM, Socol Y. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology 2021; 22:145-164. [PMID: 33420860 PMCID: PMC7794644 DOI: 10.1007/s10522-020-09908-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
Hormesis is any kind of biphasic dose-response when low doses of some agents are beneficial while higher doses are detrimental. Radiation hormesis is the most thoroughly investigated among all hormesis-like phenomena, in particular in biogerontology. In this review, we aimed to summarize research evidence supporting hormesis through exposure to low-dose ionizing radiation (LDIR). Radiation-induced longevity hormesis has been repeatedly reported in invertebrate models such as C. elegans, Drosophila and flour beetles and in vertebrate models including guinea pigs, mice and rabbits. On the contrary, suppressing natural background radiation was repeatedly found to cause detrimental effects in protozoa, bacteria and flies. We also discussed here the possibility of clinical use of LDIR, predominantly for age-related disorders, e.g., Alzheimer's disease, for which no remedies are available. There is accumulating evidence that LDIR, such as those commonly used in X-ray imaging including computer tomography, might act as a hormetin. Of course, caution should be exercised when introducing new medical practices, and LDIR therapy is no exception. However, due to the low average residual life expectancy in old patients, the short-term benefits of such interventions (e.g., potential therapeutic effect against dementia) may outweigh their hypothetical delayed risks (e.g., cancer). We argue here that assessment and clinical trials of LDIR treatments should be given priority bearing in mind the enormous economic, social and ethical implications of potentially-treatable, age-related disorders.
Collapse
|