1
|
Smith TL, Ryan TL, Escalona MB, Shuryak IE, Balajee AS. Application of FISH based G2-PCC assay for the cytogenetic assessment of high radiation dose exposures: Potential implications for rapid triage biodosimetry. PLoS One 2024; 19:e0312564. [PMID: 39453904 PMCID: PMC11508073 DOI: 10.1371/journal.pone.0312564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/27/2024] Open
Abstract
The main goal of this study is to test the utility of calyculin A induced G2-PCC assay as a biodosimetry triage tool for assessing a wide range of low and acute high radiation dose exposures of photons. Towards this initiative, chromosome aberrations induced by low and high doses of x-rays were evaluated and characterized in G2-prematurely condensed chromosomes (G2-PCCs) by fluorescence in situ hybridization (FISH) using human centromere and telomere specific PNA (peptide nucleic acid) probes. A dose dependent increase in the frequency of dicentric chromosomes was observed in the G2-PCCs up to 20 Gy of x-rays. The combined yields of dicentrics and rings in the G2-PCCs showed a clear dose dependency up to 20 Gy from 0.02/cell for 0.1 Gy to 14.98/cell for 20 Gy. Centric rings were observed more frequently than acentric ring chromosomes in the G2-PCCs at all the radiation doses from 1 Gy to 20 Gy. A head-to-head comparison was also performed by FISH on the yields of chromosome aberrations induced by different doses of x-rays (0 Gy -7.5 Gy) in colcemid arrested metaphase chromosomes and calyculin A induced G2-PCCs. In general, the frequencies of dicentrics, rings and acentric fragments were slightly higher in G2-PCCs than in colcemid arrested metaphase chromosomes at all the radiation doses, but the differences were not statistically significant. To reduce the turnaround time for absorbed radiation dose estimation, attempt was made to obtain G2-PCCs by reducing the culture time to 36 hrs. The absorbed doses estimated in x-rays irradiated (0,1,2 and 4 Gy) G2-PCCs after 36 hrs of culture were grossly like that of G2-PCCs and colcemid arrested metaphase chromosomes prepared after 48 hrs of culture. Our study indicates that the shortened version of calyculin A induced G2-PCC assay coupled with the FISH staining technique can serve as an effective triage biodosimetry tool for large-scale radiological/nuclear incidents.
Collapse
Affiliation(s)
- Tammy L. Smith
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Terri L. Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Maria B. Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Igor E. Shuryak
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York, United States of America
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
2
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
3
|
Ferreira-Lucena LR, Xavier AISF, Netto AM, Magnata SDSLP, Siqueira Lima G, Amaral A. Extending culture time to improve Mitotic Index for cytogenetic dosimetry. Int J Radiat Biol 2024; 100:1029-1040. [PMID: 38787719 DOI: 10.1080/09553002.2024.2356545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE To analyze the effects of extending lymphocyte cultivation time on the Mitotic Index, frequency of first-division cells, and dose estimation after irradiating blood samples with different doses of radiation. MATERIALS AND METHODS Blood samples from two healthy male volunteers were separately irradiated with three doses (3, 5, and 6 Gy) using a 60Co gamma source (average dose rate: 1.48 kGy.h-1) and cultivated in vitro for conventional (48 h) and extended (56, 68, and 72 h) amounts of time. Colcemid (0.01 µg.mL-1) was added at the beginning of the culture period. Cells were fixed, stained with fluorescence plus Giemsa (FPG), and analyzed under a light microscope. The effects of prolonged culture duration on the Mitotic Index (MI), frequency of first-division cells (M1 cells), and the First-Division Mitotic Index (FDMI) were investigated. The estimation of delivered doses was conducted using a conventional 48h-culture calibration curve. RESULTS Overall, cells presented higher MI (up to 12-fold) with the extension of culture, while higher radiation doses led to lower MI values (up to 80% reduction at 48 h). Cells irradiated with higher doses (5 and 6 Gy) had the most significant increase (5- to 12-fold) of MI as the cultivation was prolonged. The frequency of M1 cells decreased with the prolongation of culture for all doses (up to 75% reduction), while irradiated cells presented higher frequencies of M1 cells than non-irradiated ones. FDMI increased for all irradiated cultures but most markedly in those irradiated with higher doses (up to 10-fold). The conventional 48h-culture calibration curve proved adequate for assessing the delivered dose based on dicentric frequency following a 72-hour culture. CONCLUSION Compared to the conventional 48-hour protocol, extending the culture length to 72 hours significantly increased the Mitotic Index and the number of first-division metaphases of irradiated lymphocytes, providing slides with a better scorable metaphase density. Extending the culture time to 72 hours, combined with FPG staining to score exclusively first-division metaphases, improved the counting of dicentric chromosomes. The methodology presented and discussed in this study can be a powerful tool for dicentric-based biodosimetry, especially when exposure to high radiation doses is involved.
Collapse
Affiliation(s)
- Luciano Rodolfo Ferreira-Lucena
- Nuclear Energy Department, Laboratory of Modeling and Biological Dosimetry, Federal University of Pernambuco, Recife, Brazil
| | | | - André Maciel Netto
- Nuclear Energy Department, Laboratory of Modeling and Biological Dosimetry, Federal University of Pernambuco, Recife, Brazil
| | | | - Giovanna Siqueira Lima
- Nuclear Energy Department, Laboratory of Modeling and Biological Dosimetry, Federal University of Pernambuco, Recife, Brazil
| | - Ademir Amaral
- Nuclear Energy Department, Laboratory of Modeling and Biological Dosimetry, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
4
|
C H A, Maddaly R. Applications of Premature Chromosome Condensation technique for genetic analysis. Toxicol In Vitro 2024; 94:105736. [PMID: 37984482 DOI: 10.1016/j.tiv.2023.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Cytogenetic techniques are used to detect aberrations in the genetic material and such techniques have a wide range of applications including for disease diagnosis, drug discovery and for the detection and quantification of mutagenic exposures. Although different types of cytogenetic techniques are in use, the Premature Chromosome Condensation (PCC) is one which is unique by virtue of it not requiring culture of peripheral blood mononucleate cells (PBMNCs) to detect chromatid and chromosomal aberrations. Such an advantage is useful in situations where rapid assessments of genetic damage is required, for example, during radiation exposures. PCC utilizes condensation of interphase chromatin by either biological or chemical means. The most widely used application of PCC is for biodosimetry. However, the rapidness of aberration detection has made PCC a useful technique for other applications such as for cancer diagnosis, drug-induced genotoxicity and preimplantation or assisted reproductive techniques. Also, PCC can be utilized for understanding the fundamental cellular mechanisms involved in chromatin condensation and chromosome morphologies. We present here the various approaches to obtain PCC, its applications and the endpoints which are used while using PCC as a cytogenetic technique.
Collapse
Affiliation(s)
- Anjali C H
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
5
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
6
|
Gotoh E. Chemical-Induced Premature Chromosome Condensation Protocol. Methods Mol Biol 2023; 2519:41-51. [PMID: 36066708 DOI: 10.1007/978-1-0716-2433-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chromosome analysis is one of most fundamental techniques for cytogenetic studies. Chromosomes are conventionally prepared from mitotic cells arrested by colcemid block protocol. Premature chromosome condensation (PCC) technique is an alternative to obtain chromosomes. It was more than half century ago that the first observation of PCC phenomena reported. Since then, cell-fusion-mediated PCC method has been developed and introduced in many fields of chromosome analysis. More than quarter century ago, novel PCC technique using chemical drug has been developed. Afterwards, this simple and efficient drug-induced PCC technique becomes a standard protocol for preparing chromosomes. Thus, it seems to be the good time to introduce PCC technique protocol for the artisans in the field of cytogenetic studies.
Collapse
Affiliation(s)
- Eisuke Gotoh
- Division of Diagnostic Imaging, Department of Radiology, Japan Labour Health and Safety Organization, Tokyo Rosai Hospital, Ohta-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Gotoh E. Visualizing Active Replication Regions in S-Phase Chromosomes. Methods Mol Biol 2023; 2519:117-126. [PMID: 36066717 DOI: 10.1007/978-1-0716-2433-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A basic question of cell biology is how DNA folds to chromosome. A number of recently accumulated evidences have suggested that folding of chromosome proceeds tightly coupled with DNA replication progresses. Drug-induced PCC is a useful tool for visualization of the interphase nuclei, in particular, S-phase, as S-phase prematurely condensed chromosomes (S-phase PCC). Active replicating DNA is labeled directly with Cy3-dUTP by bead loading method, and then S-phase nuclei is immediately condensed prematurely by calyculin A to obtain S-phase PCC. Active replicating regions on S-PCC are observed under a scanning confocal microscope. Cy3-dUTP-labeled S-phase PCCs clearly reveal the drastic transitional change of chromosome formation through S-phase, starting from a "cloudy nebula" to numerous numbers of "beads on a string" and finally to "striped arrays of banding structured chromosome" known as G- or R-banding pattern. The number, distribution, and shape of replication foci were also measured in individual subphase of S-phase; maximally ~1400 foci of 0.35 μm average radius size were scored at the beginning of S-phase, and the number is reduced to ~100 at the end of S-phase. Drug-induced PCC clearly provided the new insight that eukaryote DNA replication is tightly coupled with the chromosome condensation/compaction for construction of eukaryote higher-ordered chromosome structure.
Collapse
Affiliation(s)
- Eisuke Gotoh
- Division of Diagnostic Imaging, Department of Radiology, Japan Labour Health and Safety Organization, Tokyo Rosai Hospital, Ohta-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Sun M, Moquet J, Lloyd D, Ainsbury E. A faster and easier biodosimetry method based on calyculin A-induced premature chromosome condensation (PCC) by scoring excess objects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:892-905. [PMID: 32590374 DOI: 10.1088/1361-6498/aba085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dicentric analysis and the ring PCC assay as established biodosimetry methods both have limitations in the estimation of absorbed doses in suspected overexposure cases between 5 and 10 Gy. The proposed method based on calyculin A-induced PCC overcomes these limitations by scoring excess objects as the endpoint. This new scoring method can potentially serve as a faster and up-scalable approach that complements the existing methods with higher accuracy at different dose ranges. It can also potentially be performed by less skilled workers when no automated system is available in mass casualty emergency cases to assist with the triage of patients. Additionally, it offers the possibility to further reduce the sample size and PCC induction time. In this pilot study, a calibration curve for excess objects was constructed using the new scoring method for the first time and a blind validation test composed of three unknown doses was carried out. Almost all the dose estimates were within the 95% confidence limits of the actual test doses by scoring only 50-100 PCC spreads. This method was found to be more accurate than ring PCC for doses below 10 Gy.
Collapse
|