1
|
Taiyab A, Choudhury A, Haidar S, Yousuf M, Rathi A, Koul P, Chakrabarty A, Islam A, Shamsi A, Hassan MI. Exploring MTH1 inhibitory potential of Thymoquinone and Baicalin for therapeutic targeting of breast cancer. Biomed Pharmacother 2024; 173:116332. [PMID: 38430630 DOI: 10.1016/j.biopha.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Cancers frequently have increased ROS levels due to disrupted redox balance, leading to oxidative DNA and protein damage, mutations, and apoptosis. The MTH1 protein plays a crucial role by sanitizing the oxidized dNTP pools. Hence, cancer cells rely on MTH1 to prevent the integration of oxidized dNTPs into DNA, preventing DNA damage and allowing cancer cell proliferation. We have discovered Thymoquinone (TQ) and Baicalin (BC) as inhibitors of MTH1 using combined docking and MD simulation approaches complemented by experimental validations via assessing binding affinity and enzyme inhibition. Docking and MD simulations studies revealed an efficient binding of TQ and BC to the active site pocket of the MTH1, and the resultant complexes are appreciably stable. Fluorescence measurements estimated a strong binding affinity of TQ and BC with Ka 3.4 ×106 and 1.0 ×105, respectively. Treating breast cancer cells with TQ and BC significantly inhibited the growth and proliferation (IC50 values 28.3 µM and 34.8 µM) and induced apoptosis. TQ and BC increased the ROS production in MCF7 cells, imposing substantial oxidative stress on cancer cells and leading to cell death. Finally, TQ and BC are proven strong MTH1 inhibitors, offering promising prospects for anti-cancer therapy.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaista Haidar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Mohd Yousuf
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aanchal Rathi
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Koul
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Helleday T. Mitotic MTH1 Inhibitors in Treatment of Cancer. Cancer Treat Res 2023; 186:223-237. [PMID: 37978139 DOI: 10.1007/978-3-031-30065-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The DNA damage response (DDR) protein MTH1 is sanitising the oxidized dNTP pool and preventing incorporation of oxidative damage into DNA and has an emerging role in mitosis. It is a stress-induced protein and often found to be overexpressed in cancer. Mitotic MTH1 inhibitors arrest cells in mitosis and result in incorporation of oxidative damage into DNA and selective killing of cancer cells. Here, I discuss the leading mitotic MTH1 inhibitor TH1579 (OXC-101, karonudib), now being evaluated in clinical trials, and describe its dual effect on mitosis and incorporation of oxidative DNA damage in cancer cells. I describe why MTH1 inhibitors that solely inhibits the enzyme activity fail to kill cancer cells and discuss if MTH1 is a valid target for cancer treatment. I discuss emerging roles of MTH1 in regulating tubulin polymerisation and mitosis and the necessity of developing the basic science insights along with translational efforts. I also give a perspective on how edgetic perturbation is making target validation difficult in the DDR field.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
3
|
Helleday T, Rudd SG. Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Mol Oncol 2022; 16:3792-3810. [PMID: 35583750 PMCID: PMC9627788 DOI: 10.1002/1878-0261.13227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
The exploitation of the DNA damage response and DNA repair proficiency of cancer cells is an important anticancer strategy. The replication and repair of DNA are dependent upon the supply of deoxynucleoside triphosphate (dNTP) building blocks, which are produced and maintained by nucleotide metabolic pathways. Enzymes within these pathways can be promising targets to selectively induce toxic DNA lesions in cancer cells. These same pathways also activate antimetabolites, an important group of chemotherapies that disrupt both nucleotide and DNA metabolism to induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can also be targeted to refine the use of these chemotherapeutics, many of which remain standard of care in common cancers. In this review article, we will discuss both these approaches exemplified by the enzymes MTH1, MTHFD2 and SAMHD1. © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Oncology and Metabolism, Weston Park Cancer CentreUniversity of SheffieldUK
| | - Sean G. Rudd
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
4
|
Bialkowski K, Szpila A. Specific 8-oxo-dGTPase activity of MTH1 (NUDT1) protein as a quantitative marker and prognostic factor in human colorectal cancer. Free Radic Biol Med 2021; 176:257-264. [PMID: 34624481 DOI: 10.1016/j.freeradbiomed.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 11/27/2022]
Abstract
The MTH1 (NUDT1) gene, because it is frequently upregulated in many types of human cancers, has been considered a general marker of carcinogenesis for over two decades. The MTH1 protein hydrolyzes the oxidized mutagenic DNA precursor, 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), to the corresponding 5'-monophosphate and inorganic pyrophosphate. This prevents its incorporation into DNA by DNA polymerases and protects cells from the accumulation of 8-oxo-dGTP-induced point mutations. Elevated MTH1 mRNA and protein in many types of human cancer indicate a worse prognosis. However, the enzymatic activity of MTH1 has remained largely uninvestigated in this context. Therefore, we have set out to determine the specific 8-oxo-dGTPase activity of MTH1 in 57 pairs of human colorectal cancers (CRC) and adjacent cancer-free tissues (CFCF). The goal was to ascertain the potential for measuring this enzymatic activity as a way to differentiate cancerous from non-cancerous specimens of the intestine, as well as defining its capabilities as a prognostic value for disease-free survival. We found that 79% of CRC tumors exhibited a higher MTH1 activity than did CFCF, with a significant 1.6-fold increase in overall median value (p < 1E-6). The 8-oxo-dGTPase in both tissues was proportional to the corresponding levels of MTH1 protein, as assayed by Western blotting. Activity higher than the ROC-optimized threshold (AUC = 0.71) indicated cancerous tissue, with a 54% sensitivity and an 83% specificity. Postoperative fate followed for up to 100 months showed that higher 8-oxo-dGTPase, in either the CFCF or the CRC tumor, clearly lowered the probability of a relapse-free survival, although borderline statistical significance (p < 0.05) was crossed only for the CFCF.
Collapse
Affiliation(s)
- Karol Bialkowski
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| | - Anna Szpila
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
5
|
Chen TW, Chang KP, Cheng CC, Chen CY, Hong SW, Sie ZL, Cheng HW, Yen WC, Huang Y, Liu SC, Wang CI. Characterization of Recurrent Relevant Genes Reveals a Novel Role of RPL36A in Radioresistant Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225623. [PMID: 34830778 PMCID: PMC8616119 DOI: 10.3390/cancers13225623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Radioresistance is one of the major factors contributing to radiotherapy failure in OSCC. By systematically comparing the prognostic values of all genes in TCGA-OSCC patients with and without radiotherapy, radioresistance-associated genes were identified. Higher RPL36A transcript levels were found to be associated with a poor prognosis only in OSCC patients with radiotherapy in the cohort of TCGA and another independent Taiwanese cohort. RPL36A was then shown to be involved in the regulation of DNA damage, cell cycle and apoptosis, leading to radioresistance. Thus, such integrated studies are expected to be greatly beneficial for the development of new therapeutic interventions for radioresistant OSCC in the future. Abstract Radioresistance is one of the major factors that contributes to radiotherapy failure in oral cavity squamous cell carcinoma (OSCC). By comparing the prognostic values of 20,502 genes expressed in patients in The Cancer Genome Atlas (TCGA)-OSCC cohort with (n = 162) and without radiotherapy (n = 118), herein identified 297 genes positively correlated with poor disease-free survival in OSCC patients with radiotherapy as the potential radioresistance-associated genes. Among the potential radioresistance-associated genes, 36 genes were upregulated in cancerous tissues relative to normal tissues. The bioinformatics analysis revealed that 60S ribosomal protein L36a (RPL36A) was the most frequently detected gene involved in radioresistance-associated gene-mediated biological pathways. Then, two independent cohorts (n = 162 and n = 136) were assessed to confirm that higher RPL36A transcript levels were significantly associated with a poor prognosis only in OSCC patients with radiotherapy. Mechanistically, we found that knockdown of RPL36A increased radiosensitivity via sensitizing cells to DNA damage and promoted G2/M cell cycle arrest followed by augmenting the irradiation-induced apoptosis pathway in OSCC cells. Taken together, our study supports the use of large-scale genomic data for identifying specific radioresistance-associated genes and suggests a regulatory role for RPL36A in the development of radioresistance in OSCC.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-P.C.); (H.-W.C.); (W.-C.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Chia Cheng
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.C.); (S.-W.H.); (Z.-L.S.)
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Shu-Wen Hong
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.C.); (S.-W.H.); (Z.-L.S.)
| | - Zong-Lin Sie
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.C.); (S.-W.H.); (Z.-L.S.)
| | - Hsing-Wen Cheng
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-P.C.); (H.-W.C.); (W.-C.Y.)
| | - Wei-Chen Yen
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (K.-P.C.); (H.-W.C.); (W.-C.Y.)
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 333, Taiwan
- Correspondence: (S.-C.L.); (C.-I.W.); Tel.: +886-3-4227151 (ext. 27754) (S.-C.L.); +886-3-2118800 (ext. 3032) (C.-I.W.)
| | - Chun-I Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.C.); (S.-W.H.); (Z.-L.S.)
- Correspondence: (S.-C.L.); (C.-I.W.); Tel.: +886-3-4227151 (ext. 27754) (S.-C.L.); +886-3-2118800 (ext. 3032) (C.-I.W.)
| |
Collapse
|
6
|
Bialkowski K, Kasprzak KS. A profile of 8-oxo-dGTPase activities in the NCI-60 human cancer panel: Meta-analytic insight into the regulation and role of MTH1 (NUDT1) gene expression in carcinogenesis. Free Radic Biol Med 2020; 148:1-21. [PMID: 31883466 DOI: 10.1016/j.freeradbiomed.2019.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
We measured the specific 8-oxo-dGTPase activity profile of the NCI-60 panel of malignant cell lines, and MTH1 protein levels in a subset of 16 lines. Their 8-oxo-dGTPase activity was compared to twelve publicly accessible MTH1 mRNA expression data bases and their cross-consistency was analyzed. 8-oxo-dGTPase and MTH1 protein levels in these cell lines are generally, but not always, mainly determined by MTH1 mRNA expression levels. The aneuploidy number of MTH1 gene copies only slightly affects its mRNA expression levels. By using the data mining platforms Compare and CellMiner, our 8-oxo-dGTPase profile was compared to five global gene expression datasets to identify genes whose expression levels are directly or inversely associated with 8-oxo-dGTPase. We analyzed effects of SNP within MTH1 on MTH1 mRNA level and enzyme activity. Similar association analysis was performed for five microRNA expression datasets. We identified several proteins and microRNA which might be involved in the regulation of MTH1 expression and we discuss potential mechanisms. Comparison of chemical and natural products sensitivities of the NCI-60 panel suggests seven compounds which are directly or inversely associated with 8-oxo-dGTPase. We provide an integrated picture of MTH1 expression combined from eleven consistent MTH1 mRNA and our 8-oxo-dGTPase activity NCI-60 profiles.
Collapse
Affiliation(s)
- Karol Bialkowski
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, 85-092, Poland.
| | - Kazimierz S Kasprzak
- Scientist Emeritus, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
7
|
Versano Z, Shany E, Freedman S, Tuval-Kochen L, Leitner M, Paglin S, Toren A, Yalon M. MutT homolog 1 counteracts the effect of anti-neoplastic treatments in adult and pediatric glioblastoma cells. Oncotarget 2018; 9:27547-27563. [PMID: 29938005 PMCID: PMC6007941 DOI: 10.18632/oncotarget.25547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/19/2018] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma, a fatal disease in both adult and pediatric patients, currently has limited treatment options that offer no more than temporary relief. Our experiments with adult and pediatric glioblastoma cell lines showed that radiation induces a dose-dependent increase in the level of MutT homolog 1 (MTH1) - an enzyme that hydrolyzes oxidized purine nucleoside triphosphates. Similarly, the combination of vorinostat, which is a histone deacetylase inhibitor, and ABT-888, which is a PARP-1 inhibitor, enhanced clonogenic death and increased the MTH1 level, relative to each treatment alone. This result suggests that the MTH1 level is directly related to the damage that is inflicted upon the cells, and its activity protects them against anti-neoplastic therapy. Indeed, the MTH1 inhibitor TH588 and MTH1 siRNA increased glioblastoma's response to both radiation and the combination of vorinostat and ABT-888. TH588 also inhibited glioblastoma's capacity for migration and invasion. In normal fibroblasts, low radiation doses and the combination of vorinostat and ABT-888 decreased the level of the enzyme. TH588 did not alter the fibroblasts’ response to radiation and only mildly affected their response to the combination of vorinostat and ABT-888. In summary, the inhibition of MTH1 is required to better realize the therapeutic potential of anti-neoplastic treatments in glioblastoma.
Collapse
Affiliation(s)
- Ziv Versano
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eitan Shany
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Shany Freedman
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liron Tuval-Kochen
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Leitner
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Shoshana Paglin
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Amos Toren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Yalon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan 52621, Israel
| |
Collapse
|
8
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
9
|
Luca G, Ventura I, Sanghez V, Russo MT, Ajmone‐Cat MA, Cacci E, Martire A, Popoli P, Falcone G, Michelini F, Crescenzi M, Degan P, Minghetti L, Bignami M, Calamandrei G. Prolonged lifespan with enhanced exploratory behavior in mice overexpressing the oxidized nucleoside triphosphatase hMTH1. Aging Cell 2013; 12:695-705. [PMID: 23648059 DOI: 10.1111/acel.12094] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2013] [Indexed: 11/30/2022] Open
Abstract
The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1-Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1-Tg mice express high levels of the hMTH1 hydrolase that degrades 8-oxodGTP and 8-oxoGTP and excludes 8-oxoguanine from both DNA and RNA. Compared to wild-type animals, hMTH1-overexpressing mice have significantly lower steady-state levels of 8-oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age-dependent accumulation of DNA 8-oxoguanine that occurs in wild-type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1-Tg animals live significantly longer than their wild-type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1-Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1-Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1-Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids.
Collapse
Affiliation(s)
- Gabriele Luca
- Department of Environment and Primary Prevention Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Ilenia Ventura
- Department of Environment and Primary Prevention Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Valentina Sanghez
- Department of Cell Biology and Neuroscience Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Maria Teresa Russo
- Department of Environment and Primary Prevention Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Maria Antonietta Ajmone‐Cat
- Department of Cell Biology and Neuroscience Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology ‘Charles Darwin’ Sapienza University Piazzale Aldo Moro, 500185Rome Italy
| | - Alberto Martire
- Department of Drug Safety and Evaluation Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Patrizia Popoli
- Department of Drug Safety and Evaluation Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology National Research Council Via E. Ramarini 3200015Monterotondo Italy
| | - Flavia Michelini
- Department of Cell Biology and Neuroscience Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Marco Crescenzi
- Department of Cell Biology and Neuroscience Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Paolo Degan
- Centro di Biotecnologie Avanzate IST ‐ Istituto Nazionale per la Ricerca sul Cancro Largo Rosanna Benzi 1016132Genova Italy
| | - Luisa Minghetti
- Department of Cell Biology and Neuroscience Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Margherita Bignami
- Department of Environment and Primary Prevention Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| | - Gemma Calamandrei
- Department of Cell Biology and Neuroscience Istituto Superiore di Sanità Viale Regina Elena 29900161Rome Italy
| |
Collapse
|
10
|
Arczewska KD, Baumeier C, Kassahun H, Sengupta T, Bjørås M, Kuśmierek JT, Nilsen H. Caenorhabditis elegans NDX-4 is a MutT-type enzyme that contributes to genomic stability. DNA Repair (Amst) 2010; 10:176-87. [PMID: 21111690 DOI: 10.1016/j.dnarep.2010.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/04/2010] [Accepted: 10/22/2010] [Indexed: 12/11/2022]
Abstract
MutT enzymes prevent DNA damage by hydrolysis of 8-oxodGTP, an oxidized substrate for DNA synthesis and antimutagenic, anticarcinogenic, and antineurodegenerative functions of MutT enzymes are well established. MutT has been found in almost all kingdoms of life, including many bacterial species, yeasts, plants and mammals. However, a Caenorhabditis elegans MutT homologue was not previously identified. Here, we demonstrate that NDX-4 exhibits both hallmarks of a MutT-type enzyme with an ability to hydrolyze 8-oxodGTP and suppress the Escherichia coli mutT mutator phenotype. Moreover, we show that NDX-4 contributes to genomic stability in vivo in C. elegans. Phenotypic analyses of an ndx-4 mutant reveal that loss of NDX-4 leads to upregulation of key stress responsive genes that likely compensate for the in vivo role of NDX-4 in protection against deleterious consequences of oxidative stress. This discovery will enable us to use this extremely robust genetic model for further research into the contribution of oxidative DNA damage to phenotypes associated with oxidative stress.
Collapse
|
11
|
Rai P. Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: Defective bricks build a defective house. Mutat Res 2010; 703:71-81. [PMID: 20673809 DOI: 10.1016/j.mrgentox.2010.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 12/20/2022]
Abstract
Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation.
Collapse
Affiliation(s)
- Priyamvada Rai
- Division of Gerontology and Geriatric Medicine, Department of Medicine, Rosenstiel Medical Sciences Building, Rm#7094/Locator Code: D-503, 1600 NW 10th Ave, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
12
|
Oxidized purine nucleotides, genome instability and neurodegeneration. Mutat Res 2010; 703:59-65. [PMID: 20601098 DOI: 10.1016/j.mrgentox.2010.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/13/2010] [Indexed: 11/23/2022]
Abstract
Oxidative DNA damage can be the consequence of endogenous metabolic processes and exogenous insults and several DNA repair enzymes provide protection against the toxic effects of oxidized DNA bases. Here we review the increasing knowledge on the relationship between an oxidized dNTPs pool and genome instability. The review also describes some important progress toward understanding the role of oxidative DNA damage and its repair in neurodegenerative diseases. In particular the hMTH1 hydrolase destroys oxidized nucleic acid precursors to prevent their harmful incorporation into DNA and RNA. Based on results obtained in our transgenic mouse overexpressing hMTH1 in the brain we discussed the mechanisms by which this hydrolase protects against neurodegeneration in Huntington disease models.
Collapse
|