1
|
|
2
|
Mariotti LG, Abdelrazzak AB, Ottolenghi A, O'Neill P, Hill MA. Stimulation of intercellular induction of apoptosis in transformed cells at very low doses of ionising radiation: spatial and temporal features. RADIATION PROTECTION DOSIMETRY 2015; 166:161-164. [PMID: 25883313 DOI: 10.1093/rpd/ncv176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ultimate response of a cell or tissue to radiation is dependent in part on intercellular signalling. This becomes increasingly important at low doses, or at low dose rates, associated with typical human exposures. In order to help characterise the underlying mechanism of intercellular signalling, and how they are perturbed following exposure to ionising radiation, a previously well-defined model system of intercellular induction of apoptosis (IIA) (Portess et al. 2007, Cancer Res. 67, 1246-1253) was adopted. The aim of the present work is to evaluate the signalling mechanisms underpinning this process through exploring the variables that can affect the IIA, i.e. dose, time and space.
Collapse
Affiliation(s)
- L G Mariotti
- Dipartimento di Fisica, Universit Degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, UK
| | - A B Abdelrazzak
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, UK Physics Research Division, National Research Centre, Giza, Egypt
| | - A Ottolenghi
- Dipartimento di Fisica, Universit Degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| | - P O'Neill
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, UK
| | - M A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
3
|
Babini G, Ugolini M, Morini J, Baiocco G, Mariotti L, de Fatis PT, Liotta M, Ottolenghi A. Investigation of radiation-induced multilayered signalling response of the inflammatory pathway. RADIATION PROTECTION DOSIMETRY 2015; 166:157-160. [PMID: 25877540 DOI: 10.1093/rpd/ncv132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ionising radiation exposure of cells might induce the perturbation of cell functions and, in particular, the activation or inhibition of several important pathways. This perturbation can cause the deregulation of both intra- and extra-cellular signalling cascades (such as the inflammatory pathway) and alter not only the behaviour of directly exposed cells but also the neighbouring non-irradiated ones, through the so-called bystander effect. The aim of the present work was to investigate the complex nonlinear interactions between the inflammatory pathway and other strictly interlaced signalling pathways, such as Erk1/2 and Akt/PKB, focusing on the radiation-induced perturbation of such pathways in the dose range of 0-2 Gy. The results show how radiation affects these interconnected pathways and how confounding factors, such as the change of culture medium, can hide radiation-induced perturbations.
Collapse
Affiliation(s)
- G Babini
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - M Ugolini
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - J Morini
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy Dipartimento di Medicina Molecolare, Universitá degli Studi di Pavia, via Forlanini 14, I-27100 Pavia, Italy
| | - G Baiocco
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - L Mariotti
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy Gray Institute for Radiation Oncology and Biology, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7DQ, UK
| | - P Tabarelli de Fatis
- Servizio di Fisica Sanitaria, IRCCS Salvatore Maugeri, via Maugeri 4, I-27100 Pavia, Italy
| | - M Liotta
- Servizio di Fisica Sanitaria, IRCCS Salvatore Maugeri, via Maugeri 4, I-27100 Pavia, Italy
| | - A Ottolenghi
- Dipartimento di Fisica, Universitá degli Studi di Pavia, via Bassi 6, I-27100 Pavia, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| |
Collapse
|
4
|
Babini G, Bellinzona VE, Morini J, Baiocco G, Mariotti L, Unger K, Ottolenghi A. Mechanisms of the induction of apoptosis mediated by radiation-induced cytokine release. RADIATION PROTECTION DOSIMETRY 2015; 166:165-169. [PMID: 25848101 DOI: 10.1093/rpd/ncv133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present work was to investigate the mechanisms of radiation-induced bystander signalling leading to apoptosis in non-irradiated co-cultured cells. Cultured non-transformed cells were irradiated, and the effect on the apoptosis rate on co-cultured non-irradiated malignant cells was determined. For this, two different levels of the investigation are presented, i.e. release of signalling proteins and transcriptomic profiling of the irradiated and non-irradiated co-cultured cells. Concerning the signalling proteins, in this study, the attention was focussed on the release of the active and latent forms of the transforming growth factor-β1 protein. Moreover, global gene expression profiles of non-transformed and transformed cells in untreated co-cultures were compared with those of 0.5-Gy-irradiated non-transformed cells co-cultured with the transformed cells. The results show an effect of radiation on the release of signalling proteins in the medium, although no significant differences in release rates were detectable when varying the doses in the range from 0.25 to 1 Gy. Moreover, gene expression results suggest an effect of radiation on both cell populations, pointing out specific signalling pathways that might be involved in the enhanced induction of apoptosis.
Collapse
Affiliation(s)
- G Babini
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| | - V E Bellinzona
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| | - J Morini
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy Dipartimento di Medicina Molecolare, Università degli Studi di Pavia, via Forlanini 14, Pavia I-27100, Italy
| | - G Baiocco
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| | - L Mariotti
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy Gray Institute for Radiation Oncology and Biology, Old Road Campus Research Building, Off Roosevelt Drive, Oxford OX3 7DQ, UK
| | - K Unger
- Research Unit of Radiation Cytogenetics, Helmholtz-Zentrum München (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - A Ottolenghi
- Dipartimento di Fisica, Università degli Studi di Pavia, via Bassi 6, Pavia I-27100, Italy Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, via Bassi 6, Pavia I-27100, Italy
| |
Collapse
|
5
|
Morini J, Babini G, Mariotti L, Baiocco G, Nacci L, Maccario C, Rößler U, Minelli A, Savio M, Gomolka M, Kulka U, Ottolenghi A, Danesino C. Radiosensitivity in lymphoblastoid cell lines derived from Shwachman-Diamond syndrome patients. RADIATION PROTECTION DOSIMETRY 2015; 166:95-100. [PMID: 25870433 DOI: 10.1093/rpd/ncv152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Shwachman-Diamond syndrome is an autosomal-recessive disorder characterised by bone marrow failure and a cumulative risk of progression to acute myeloid leukaemia. The Shwachman-Bodian-Diamond syndrome (SBDS) gene, the only gene known to be causative of the pathology, is involved in ribosomal biogenesis, stress responses and DNA repair, and the lack of SBDS sensitises cells to many stressors and leads to mitotic spindle destabilisation. The effect of ionising radiation on SBDS-deficient cells was investigated using immortalised lymphocytes from SDS patients in comparison with positive and negative controls in order to test whether, in response to ionising radiation exposure, any impairment in the DNA repair machinery could be observed. After irradiating cells with different doses of X-rays or gamma-rays, DNA repair kinetics and the residual damages using the alkaline COMET assay and the γ-H2AX assay were assessed, respectively. In this work, preliminary data about the comparison between ionising radiation effects in different patients-derived cells and healthy control cells are presented.
Collapse
Affiliation(s)
- J Morini
- Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy
| | - L Mariotti
- Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy Gray Institute for Radiation Oncology and Biology, Oxford, UK
| | - G Baiocco
- Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy
| | - L Nacci
- Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy
| | - C Maccario
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - U Rößler
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Germany
| | - A Minelli
- Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy
| | - M Savio
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Germany
| | - M Gomolka
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Germany
| | - U Kulka
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, Germany
| | - A Ottolenghi
- Department of Physics, University of Pavia, Pavia, Italy INFN National Institute of Nuclear Physics, Section of Pavia, Pavia, Italy
| | - C Danesino
- Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Babini G, Morini J, Baiocco G, Mariotti L, Ottolenghi A. In vitro γ-ray-induced inflammatory response is dominated by culturing conditions rather than radiation exposures. Sci Rep 2015; 5:9343. [PMID: 25791775 PMCID: PMC4366819 DOI: 10.1038/srep09343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/26/2015] [Indexed: 01/14/2023] Open
Abstract
The inflammatory pathway has a pivotal role in regulating the fate and functions of cells after a wide range of stimuli, including ionizing radiation. However, the molecular mechanisms governing such responses have not been completely elucidated yet. In particular, the complex activation dynamics of the Nuclear transcription Factor kB (NF-kB), the key molecule governing the inflammatory pathway, still lacks a complete characterization. In this work we focused on the activation dynamics of the NF-kB (subunit p65) pathway following different stimuli. Quantitative measurements of NF-kB were performed and results interpreted within a systems theory approach, based on the negative feedback loop feature of this pathway. Time-series data of nuclear NF-kB concentration showed no evidence of γ-ray induced activation of the pathway for doses up to 5Gy but highlighted important transient effects of common environmental stress (e.g. CO2, temperature) and laboratory procedures, e.g. replacing the culture medium, which dominate the in vitro inflammatory response.
Collapse
Affiliation(s)
- G Babini
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| | - J Morini
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy [3] Department of Molecular Medicine, Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy
| | - G Baiocco
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| | - L Mariotti
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| | - A Ottolenghi
- 1] Department of Physics, University of Pavia, Pavia, Italy [2] INFN, National Institute of Nuclear Physics, Sezione di Pavia, Pavia, Italy
| |
Collapse
|
7
|
Sato T, Hamada N. Model assembly for estimating cell surviving fraction for both targeted and nontargeted effects based on microdosimetric probability densities. PLoS One 2014; 9:e114056. [PMID: 25426641 PMCID: PMC4245256 DOI: 10.1371/journal.pone.0114056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/03/2014] [Indexed: 11/23/2022] Open
Abstract
We here propose a new model assembly for estimating the surviving fraction of cells irradiated with various types of ionizing radiation, considering both targeted and nontargeted effects in the same framework. The probability densities of specific energies in two scales, which are the cell nucleus and its substructure called a domain, were employed as the physical index for characterizing the radiation fields. In the model assembly, our previously established double stochastic microdosimetric kinetic (DSMK) model was used to express the targeted effect, whereas a newly developed model was used to express the nontargeted effect. The radioresistance caused by overexpression of anti-apoptotic protein Bcl-2 known to frequently occur in human cancer was also considered by introducing the concept of the adaptive response in the DSMK model. The accuracy of the model assembly was examined by comparing the computationally and experimentally determined surviving fraction of Bcl-2 cells (Bcl-2 overexpressing HeLa cells) and Neo cells (neomycin resistant gene-expressing HeLa cells) irradiated with microbeam or broadbeam of energetic heavy ions, as well as the WI-38 normal human fibroblasts irradiated with X-ray microbeam. The model assembly reproduced very well the experimentally determined surviving fraction over a wide range of dose and linear energy transfer (LET) values. Our newly established model assembly will be worth being incorporated into treatment planning systems for heavy-ion therapy, brachytherapy, and boron neutron capture therapy, given critical roles of the frequent Bcl-2 overexpression and the nontargeted effect in estimating therapeutic outcomes and harmful effects of such advanced therapeutic modalities.
Collapse
Affiliation(s)
- Tatsuhiko Sato
- Research Group for Radiation Protection, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, Japan
- * E-mail:
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
8
|
Abstract
The aim of this work was to investigate the impact of intercellular contact during radiation exposure on cell survival in regions of reduced dose. Methods. The PC3 human prostate adenocarcinoma cell line was irradiated using a 6 MV x-ray beam to assess clonogenic cell deaths with the specific aim to investigate cell survival in a dose cold spot. Radiation-induced cell survival in a 20% lower dose region, compared to that of cells receiving 100% of the prescribed dose (2 Gy), was assessed for experimental set-ups when under-irradiated cells were either in direct contact with cells receiving 2 Gy or irradiated separately. In addition, the results were compared against non-irradiated controls. Results. A significant (p < 0.001) decrease in cell survival was found when cells, collocated in the same flask, received either 100% or 80% of the prescribed dose (the dose distribution contained a cold spot of 20% lower dose) compared to non-irradiated cells. However, in the experiment in which the entire flask was exposed to only 80% of the prescribed dose, the mean difference in cell survival compared to non-irradiated control was not significant (p > 0.05). This was contrary to a significant decrease (p < 0.001) in survival of cells receiving 100% of the prescribed dose versus the control. Additionally, significant reduction (p < 0.05) in cell survival was observed for cells which were under-irradiated by 20% but collocated in the same flask with cells receiving 100% dose compared to cells where the entire flask was irradiated with 80% of the prescribed dose. Conclusion. For the given cell line, under existing growing and treatment conditions, the cell survival in the dose cold spot region was significantly lower when under-irradiated cells were in contact with the cells receiving 100% of the prescribed dose compared to survival of cells under-irradiated by the same amount of radiation but treated separately to cells receiving 100% dose.
Collapse
Affiliation(s)
- Svetlana Sjostedt
- Medical Physics Department, Radiation Oncology, Royal Adelaide Hospital, South Australian Department of Health , South Australia , Australia
| | | | | |
Collapse
|
9
|
Mariotti LG, Pirovano G, Savage KI, Ghita M, Ottolenghi A, Prise KM, Schettino G. Use of the γ-H2AX assay to investigate DNA repair dynamics following multiple radiation exposures. PLoS One 2013; 8:e79541. [PMID: 24312182 DOI: 10.1371/journal.pone.0079541e.0079541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/23/2013] [Indexed: 05/25/2023] Open
Abstract
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.
Collapse
Affiliation(s)
- Luca G Mariotti
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy ; Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Mariotti LG, Pirovano G, Savage KI, Ghita M, Ottolenghi A, Prise KM, Schettino G. Use of the γ-H2AX assay to investigate DNA repair dynamics following multiple radiation exposures. PLoS One 2013; 8:e79541. [PMID: 24312182 PMCID: PMC3843657 DOI: 10.1371/journal.pone.0079541] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.
Collapse
Affiliation(s)
- Luca G. Mariotti
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Giacomo Pirovano
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Kienan I. Savage
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Mihaela Ghita
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrea Ottolenghi
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Kevin M. Prise
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Giuseppe Schettino
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Campa A, Balduzzi M, Dini V, Esposito G, Tabocchini MA. The complex interactions between radiation induced non-targeted effects and cancer. Cancer Lett 2013; 356:126-36. [PMID: 24139968 DOI: 10.1016/j.canlet.2013.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023]
Abstract
Radiation induced non-targeted effects have been widely investigated in the last two decades for their potential impact on low dose radiation risk. In this paper we will give an overview of the most relevant aspects related to these effects, starting from the definition of the low dose scenarios. We will underline the role of radiation quality, both in terms of mechanisms of interaction with the biological matter and for the importance of charged particles as powerful tools for low dose effects investigation. We will focus on cell communication, representing a common feature of non-targeted effects, giving also an overview of cancer models that have explicitly considered such effects.
Collapse
Affiliation(s)
- Alessandro Campa
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Balduzzi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy; Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Valentina Dini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Antonella Tabocchini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy.
| |
Collapse
|
12
|
Alloni D, Campa A, Friedland W, Mariotti L, Ottolenghi A. Integration of Monte Carlo simulations with PFGE experimental data yields constant RBE of 2.3 for DNA double-strand break induction by nitrogen ions between 125 and 225 keV/μm LET. Radiat Res 2013; 179:690-7. [PMID: 23647004 DOI: 10.1667/r3043.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The number of small radiation-induced DNA fragments can be heavily underestimated when determined from measurements of DNA mass fractions by gel electrophoresis, leading to a consequent underestimation of the initial DNA damage induction. In this study we reanalyzed the experimental results for DNA fragmentation and DNA double-strand break (DSB) yields in human fibroblasts irradiated with γ rays and nitrogen ion beams with linear energy transfer (LET) equal to 80, 125, 175 and 225 keV/μm, originally measured by Höglund et al. (Radiat Res 155, 818-825, 2001 and Int J Radiat Biol 76, 539-547, 2000). In that study the authors converted the measured distributions of fragment masses into DNA fragment distributions using mid-range values of the measured fragment length intervals, in particular they assumed fragments with lengths in the interval of 0-48 kbp had the mid-range value of 24 kbp. However, our recent detailed simulations with the Monte Carlo code PARTRAC, while reasonably in agreement with the mass distributions, indicate significantly increased yields of very short fragments by high-LET radiation, so that the actual average fragment lengths, in the interval 0-48 kbp, 2.4 kbp for 225 keV/μm nitrogen ions were much shorter than the assumed mid-range value of 24 kbp. When the measured distributions of fragment masses are converted into fragment distributions using the average fragment lengths calculated by PARTRAC, significantly higher yields of DSB related to short fragments were obtained and resulted in a constant relative biological effectiveness (RBE) for DSB induction yield of 2.3 for nitrogen ions at 125-225 keV/μm LET. The previously reported downward trend of the RBE values over this LET range for DSB induction appears to be an artifact of an inadequate average fragment length in the smallest interval.
Collapse
Affiliation(s)
- D Alloni
- Laboratory of Applied Nuclear Energy, Università degli studi di Pavia, Italy
| | | | | | | | | |
Collapse
|
13
|
Mariotti LG, Bertolotti A, Ranza E, Babini G, Ottolenghi A. Investigation of the mechanisms underpinning IL-6 cytokine release in bystander responses: the roles of radiation dose, radiation quality and specific ROS/RNS scavengers. Int J Radiat Biol 2012; 88:751-62. [PMID: 22709338 DOI: 10.3109/09553002.2012.703365] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the mechanisms regulating the pathways of the bystander transmission in vitro, focusing on the radiation-perturbed signalling (via Interleukine 6, IL-6) of the irradiated cells after exposure to low doses of different radiation types. MATERIALS AND METHODS An integrated 'systems radiation biology' approach was adopted. Experimentally the level of the secreted cytokine from human fibroblasts was detected with ELISA (Enzyme-Linked ImmunoSorbent Assay) method and subsequently the data were analyzed and coupled with a phenomenological model based on differential equations to evaluate the single-cell release mechanisms. RESULTS The data confirmed the important effect of radiation on the IL-6 pathway, clearly showing a crucial role of the ROS (Reactive Oxygen Species) in transducing the effect of initial radiation exposure and the subsequent long-term release of IL-6. Furthermore, a systematic investigation of radiation dose/radiation quality dependence seems to indicate an increasing efficiency of high LET (Linear Energy Transfer) irradiation in the release of the cytokine. Basic hypotheses were tested, on the correlation between direct radiobiological damage and signal release and on the radiation target for this endpoint (secretion of IL-6). CONCLUSIONS The results demonstrate the role of reactive oxygen and nitrogen species in the signaling pathways of IL-6. Furthermore the systems radiation biology approach here adopted, allowed us to test and verify hypotheses on the behavior of the single cell in the release of cytokine, after the exposure to different doses and different qualities of ionizing radiation.
Collapse
Affiliation(s)
- Luca G Mariotti
- Department of Physics, University of Pavia, Pavia, and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Italy.
| | | | | | | | | |
Collapse
|
14
|
Kundrát P, Friedland W. Non-linear response of cells to signals leads to revised characteristics of bystander effects inferred from their modelling. Int J Radiat Biol 2012; 88:743-50. [DOI: 10.3109/09553002.2012.698029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
KOBAYASHI KOZUE, TANAKA MASUMI, NEBUYA SATORU, KOKUBO KENICHI, FUKUOKA YUTAKA, HARADA YOSHITERU, KOBAYASHI HIROUSKE, NOSHIRO MAKOTO, INAOKA HIDENORI. Temporal change in IL-6 mRNA and protein expression produced by cyclic stretching of human pulmonary artery endothelial cells. Int J Mol Med 2012; 30:509-13. [DOI: 10.3892/ijmm.2012.1023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/27/2012] [Indexed: 11/06/2022] Open
|
16
|
Faria FP, Dickman R, Moreira CHC. Models of the radiation-induced bystander effect. Int J Radiat Biol 2012; 88:592-9. [DOI: 10.3109/09553002.2012.692568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Scott BR. Modeling DNA double-strand break repair kinetics as an epiregulated cell-community-wide (epicellcom) response to radiation stress. Dose Response 2011; 9:579-601. [PMID: 22461762 DOI: 10.2203/dose-response.10-039.scott] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The multicellular signaling model (MULTISIG1) was recently introduced to simulate the kinetics of repair of DNA double-strand breaks (DSBs) that were induced in confluent (non-dividing) cultured cells by a very low radiation dose where at most a single induced DSB would be expected in a given cell nucleus. The repair kinetics was modeled as representing what is now called an epigenetically-regulated (epiregulated) cell-community-wide (epicellcom) response to radiation stress. DSB repair initiation is assumed to require a threshold number of cells with DSBs participating in intercellular stress-response signaling. The MULTISIG1 model is extended in this study to apply to moderate doses where several DSBs can occur on the same DNA molecule. The repair of multiple breaks on the same molecule is treated as sequential stochastic events. For cells of differing genetic characteristics and epigenetic statuses, relationships are provided for evaluating the relative susceptibility (RS) for DSB induction, relative repair capacity (RRC) for DSB repair, and relative epiapoptosis capacity (REC), for epigenetically regulated apoptosis. The modified MULTISIG1 model is used to characterize the expected repair kinetics for confluent, human lung fibroblasts (MRC-5 line) briefly exposed in vitro to 90-kV x-rays. Possible application of the model to biological dosimetry is also discussed.
Collapse
|
18
|
Mariotti L, Facoetti A, Bertolotti A, Ranza E, Alloni D, Ottolenghi A. Radiation-induced perturbation of cell-to-cell signalling and communication. RADIATION PROTECTION DOSIMETRY 2011; 143:294-300. [PMID: 21112887 DOI: 10.1093/rpd/ncq405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The investigation of the bystander phenomena (i.e. the induction of damage in cells not directly traversed by radiation) is strictly related to the study of the mechanisms of intercellular communication and of the perturbative effects of radiation. A new possible way to try to solve the bystander puzzle is through a 'systems radiation biology' approach with the total integration of experimental and theoretical activities. In particular, this contribution will focus on: (1) 'ad hoc' experiments designed to quantify key parameters involved in intercellular signalling (focusing, as a pilot study, on release, decay and internalization of interleukine-6 molecules, their modulation by radiation, and possible differences between in vivo/in vitro behaviour); (2) the implementation and the development of two different modelling approaches: a stochastic model (based on a Monte Carlo code) that takes account of the local mechanisms of release and internalization of signalling molecules (e.g. cytokines) and an analytical model where signal molecules are treated as a population and their temporal behaviour is described by differential equations. This approach provided instruments to investigate the complex phenomena of signal transmission and the role of cell communication to guarantee (maintain) the robustness of the in vitro experimental systems against the effects of perturbations.
Collapse
Affiliation(s)
- L Mariotti
- Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res 2011; 711:28-40. [PMID: 21281649 DOI: 10.1016/j.mrfmmm.2011.01.003] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/18/2011] [Accepted: 01/22/2011] [Indexed: 01/08/2023]
Abstract
This review describes the PARTRAC suite of comprehensive Monte Carlo simulation tools for calculations of track structures of a variety of ionizing radiation qualities and their biological effects. A multi-scale target model characterizes essential structures of the whole genomic DNA within human fibroblasts and lymphocytes in atomic resolution. Calculation methods and essential results are recapitulated regarding the physical, physico-chemical and chemical stage of track structure development of radiation damage induction. Recent model extension towards DNA repair processes extends the time dimension by about 12 orders of magnitude and paves the way for superior predictions of radiation risks.
Collapse
Affiliation(s)
- Werner Friedland
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | | | | | | |
Collapse
|