1
|
Khalifa J, François S, Rancoule C, Riccobono D, Magné N, Drouet M, Chargari C. Gene therapy and cell therapy for the management of radiation damages to healthy tissues: Rationale and early results. Cancer Radiother 2019; 23:449-465. [PMID: 31400956 DOI: 10.1016/j.canrad.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, ionizing radiations have numerous applications, especially in medicine for diagnosis and therapy. Pharmacological radioprotection aims at increasing detoxification of free radicals. Radiomitigation aims at improving survival and proliferation of damaged cells. Both strategies are essential research area, as non-contained radiation can lead to harmful effects. Some advances allowing the comprehension of normal tissue injury mechanisms, and the discovery of related predictive biomarkers, have led to developing several highly promising radioprotector or radiomitigator drugs. Next to these drugs, a growing interest does exist for biotherapy in this field, including gene therapy and cell therapy through mesenchymal stem cells. In this review article, we provide an overview of the management of radiation damages to healthy tissues via gene or cell therapy in the context of radiotherapy. The early management aims at preventing the occurrence of these damages before exposure or just after exposure. The late management offers promises in the reversion of constituted late damages following irradiation.
Collapse
Affiliation(s)
- J Khalifa
- Départment de radiothérapie, institut Claudius-Regaud, institut universitaire du cancer de Toulouse - Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - S François
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Rancoule
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - D Riccobono
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - N Magné
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - M Drouet
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Chargari
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France; Service de santé des armées, école du Val-de-Grâce, 74, boulevard de Port-Royal, 75005 Paris, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vailant, 94805 Villejuif, France
| |
Collapse
|
2
|
Montay-Gruel P, Meziani L, Yakkala C, Vozenin MC. Expanding the therapeutic index of radiation therapy by normal tissue protection. Br J Radiol 2018; 92:20180008. [PMID: 29694234 DOI: 10.1259/bjr.20180008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Normal tissue damages induced by radiation therapy remain dose-limiting factors in radiation oncology and this is still true despite recent advances in treatment planning and delivery of image-guided radiation therapy. Additionally, as the number of long-term cancer survivors increases, unacceptable complications emerge and dramatically reduce the patients' quality of life. This means that patients and clinicians expect discovery of new options for the therapeutic management of radiation-induced complications. Over the past four decades, research has enhanced our understanding of the pathophysiological, cellular and molecular processes governing normal tissue toxicity. Those processes are complex and involve the cross-talk between the various cells of a tissue, including fibroblasts, endothelial, immune and epithelial cells as well as soluble paracrine factors including growth factors and proteases. We will review the translatable pharmacological approaches that have been developed to prevent, mitigate, or reverse radiation injuries based upon the targeting of cellular and signalling pathways. We will summarize the different steps of the research strategy, from the definition of initial biological hypotheses to preclinical studies and clinical translation. We will also see how novel research and therapeutic hypotheses emerge along the way as well as briefly highlight innovative approaches based upon novel radiotherapy delivery procedures.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lydia Meziani
- INSERM, U1030, F-94805, Villejuif, Paris, France.,Université Paris Sud, Université Paris Saclay, Faculté de médecine du Kremlin-Bicêtre, Labex LERMIT, DHU TORINO, Paris, France
| | - Chakradhar Yakkala
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
3
|
Kübler J, Kirschner S, Hartmann L, Welzel G, Engelhardt M, Herskind C, Veldwijk MR, Schultz C, Felix M, Glatting G, Maier P, Wenz F, Brockmann MA, Giordano FA. The HIV-derived protein Vpr52-96 has anti-glioma activity in vitro and in vivo. Oncotarget 2018; 7:45500-45512. [PMID: 27275537 PMCID: PMC5216737 DOI: 10.18632/oncotarget.9787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Patients with actively replicating human immunodeficiency virus (HIV) exhibit adverse reactions even to low irradiation doses. High levels of the virus-encoded viral protein R (Vpr) are believed to be one of the major underlying causes for increased radiosensitivity. As Vpr efficiently crosses the blood-brain barrier and accumulates in astrocytes, we examined its efficacy as a drug for treatment of glioblastoma multiforme (GBM). In vitro, four glioblastoma-derived cell lines with and without methylguanine-DNA methyltransferase (MGMT) overexpression (U251, U87, U251-MGMT, U87-MGMT) were exposed to Vpr, temozolomide (TMZ), conventional photon irradiation (2 to 6 Gy) or to combinations thereof. Vpr showed high rates of acute toxicities with median effective doses of 4.0±1.1 μM and 15.7±7.5 μM for U251 and U87 cells, respectively. Caspase assays revealed Vpr-induced apoptosis in U251, but not in U87 cells. Vpr also efficiently inhibited clonogenic survival in both U251 and U87 cells and acted additively with irradiation. In contrast to TMZ, Vpr acted independently of MGMT expression. Dose escalation in mice (n=12) was feasible and resulted in no evident renal or liver toxicity. Both, irradiation with 3×5 Gy (n=8) and treatment with Vpr (n=5) delayed intracerebral tumor growth and prolonged overall survival compared to untreated animals (n=5; p3×5 Gy<0.001 and pVpr=0.04; log-rank test). Our data show that the HIV-encoded peptide Vpr exhibits all properties of an effective chemotherapeutic drug and may be a useful agent in the treatment of GBM.
Collapse
Affiliation(s)
- Jens Kübler
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Kirschner
- Department of Neuroradiology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Linda Hartmann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Grit Welzel
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maren Engelhardt
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Institute of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Schultz
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Institute of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Manuela Felix
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick Maier
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Transplanted fibroblasts proliferate in host bronchial tissue and enhance bronchial anastomotic healing in a rodent model. Int J Artif Organs 2017. [PMID: 28623643 DOI: 10.5301/ijao.5000601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Healing of airway anastomoses after preoperative irradiation can be a significant clinical problem. The augmentation of bronchial anastomoses with a fibroblast-seeded human acellular dermis (hAD) was shown to be beneficial, although the underlying mechanism remained unclear. Therefore, in this study we investigated the fate of the fibroblasts transplanted to the scaffold covering the anastomosis. MATERIAL AND METHODS 32 Fisher rats underwent surgical anastomosis of the left main bronchus. In a 2 × 2 factorial design, they were randomized to receive preoperative irradiation of 20 Gy and augmentation of the anastomosis with a fibroblast-seeded transplant. Fibroblasts from subcutaneous fat of Fischer-344 rat were transduced retrovirally with tdTomato for cell tracking. After 7 and 14 days, animals were sacrificed and cell concentration of transplanted and nontransplanted fibroblasts in the hAD as well as in the bronchial tissue was measured using RT-PCR. RESULTS Migration of transplanted fibroblasts from dermis to bronchus were demonstrated in both groups, irradiated and nonirradiated. In the irradiated groups, there was a cell count of 7 × 104 ± 1 × 104 tomato+-fibroblasts in the bronchial tissue at day 7, rising to 1 × 105 ± 1 × 104 on day 14 (p <0.0001). Tomato+-cell concentration in hAD increased from 6 × 103 ± 1 × 103 at day 7 to 6 × 104 ± 1 × 104 at day 14 (p <0.0001). In the nonirradiated groups, tomato+-cell concentration in bronchus was 4 × 103 ± 1 × 103 on day 7 and 4 × 103 ± 1 × 103 at day 14. In the hAD tomato+ cell concentration rising from 1 × 104 ± 1 × 103 at day 7 to 2 × 104 ± 3 × 103 cells at day 14 (p = 0.0028). CONCLUSIONS Transplanted fibroblasts in the irradiated groups proliferate and migrate into the irradiated host bronchial tissue, but not in the nonirradiated groups.
Collapse
|
5
|
Johnke RM, Sattler JA, Allison RR. Radioprotective agents for radiation therapy: future trends. Future Oncol 2015; 10:2345-57. [PMID: 25525844 DOI: 10.2217/fon.14.175] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Only two radioprotective compounds, amifostine and palifermin, currently have the US FDA approval for use in radiation therapy. However, several agents have been reported that show therapeutic promise. Many of these agents are free radical scavengers/antioxidants. Superoxide dismutase and superoxide dismutase mimetics, nitroxides and dietary antioxidants are all being investigated. Recently, alternative strategies of drug development have been evolving, which focus on targeting the series of cellular insult recognition/repair responses initiated following radiation. These agents, which include cytokines/growth factors, angiotensin-converting enzyme inhibitors and apoptotic modulators, show promise of having significant impact on the mitigation of radiation injury. Herein, we review current literature on the development of radioprotectors with emphasis on compounds with proven or potential usefulness in radiation therapy.
Collapse
Affiliation(s)
- Roberta M Johnke
- Department of Radiation Oncology, East Carolina University Brody School of Medicine, Greenville, NC 27834, USA
| | | | | |
Collapse
|
6
|
Characterization of Dynamic Behaviour of MCF7 and MCF10A Cells in Ultrasonic Field Using Modal and Harmonic Analyses. PLoS One 2015; 10:e0134999. [PMID: 26241649 PMCID: PMC4524665 DOI: 10.1371/journal.pone.0134999] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/15/2015] [Indexed: 12/25/2022] Open
Abstract
Treatment options specifically targeting tumour cells are urgently needed in order to reduce the side effects accompanied by chemo- or radiotherapy. Differences in subcellular structure between tumour and normal cells determine their specific elasticity. These structural differences can be utilised by low-frequency ultrasound in order to specifically induce cytotoxicity of tumour cells. For further evaluation, we combined in silico FEM (finite element method) analyses and in vitro assays to bolster the significance of low-frequency ultrasound for tumour treatment. FEM simulations were able to calculate the first resonance frequency of MCF7 breast tumour cells at 21 kHz in contrast to 34 kHz for the MCF10A normal breast cells, which was due to the higher elasticity and larger size of MCF7 cells. For experimental validation of the in silico-determined resonance frequencies, equipment for ultrasonic irradiation with distinct frequencies was constructed. Differences for both cell lines in their response to low-frequent ultrasonic treatment were corroborated in 2D and in 3D cell culture assays. Treatment with ~ 24.5 kHz induced the death of MCF7 cells and MDA-MB-231 metastases cells possessing a similar elasticity; frequencies of > 29 kHz resulted in cytotoxicity of MCF10A. Fractionated treatments by ultrasonic irradiation of suspension myeloid HL60 cells resulted in a significant decrease of viable cells, mostly significant after threefold irradiation in intervals of 3 h. Most importantly in regard to a clinical application, combined ultrasonic treatment and chemotherapy with paclitaxel showed a significantly increased killing of MCF7 cells compared to both monotherapies. In summary, we were able to determine for the first time for different tumour cell lines a specific frequency of low-intensity ultrasound for induction of cell ablation. The cytotoxic effect of ultrasonic irradiation could be increased by either fractionated treatment or in combination with chemotherapy. Thus, our results will open new perspectives in tumour treatment.
Collapse
|
7
|
Vitacolonna M, Belharazem D, Maier P, Hohenberger P, Roessner ED. In vivo Quantification of the Effects of Radiation and Presence of Hair Follicle Pores on the Proliferation of Fibroblasts in an Acellular Human Dermis in a Dorsal Skinfold Chamber: Relevance for Tissue Reconstruction following Neoadjuvant Therapy. PLoS One 2015; 10:e0125689. [PMID: 25955842 PMCID: PMC4425687 DOI: 10.1371/journal.pone.0125689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION In neoadjuvant therapy, irradiation has a deleterious effect on neoangiogenesis. The aim of this study was to examine the post-implantation effects of neoadjuvant irradiation on the survival and proliferation of autologous cells seeded onto an acellular human dermis (hAD; Epiflex). Additionally, we examined the influence of dermal hair follicle pores on viability and proliferation. We used dorsal skinfold chambers implanted in rats and in-situ microscopy to quantify cell numbers over 9 days. METHODS 24 rats received a skinfold chamber and were divided into 2 main groups; irradiated and unirradiated. In the irradiated groups 20Gy were applied epicutaneously at the dorsum. Epiflex pieces were cut to size 5x5mm such that each piece had either one or more visible hair follicle pores, or no such visible pores. Fibroblasts were transduced lentiviral with a fluorescent protein for cell tracking. Matrices were seeded statically with 2.5x104 fluorescent fibroblasts and implanted into the chambers. In each of the two main groups, half of the rats received Epiflex with hair follicle pores and half received Epiflex without pores. Scaffolds were examined in-situ at 0, 3, 6 and 9 days after transplantation. Visible cells on the surface were quantified using ImageJ. RESULTS In all groups cell numbers were decreased on day 3. A treatment-dependent increase in cell numbers was observed at subsequent time points. Irradiation had an adverse effect on cell survival and proliferation. The number of cells detected in both irradiated and non-irradiated subjects was increased in those subjects that received transplants with hair follicle pores. DISCUSSION This in-vivo study confirms that radiation negatively affects the survival and proliferation of fibroblasts seeded onto a human dermis transplant. The presence of hair follicle pores in the dermis transplants is shown to have a positive effect on cell survival and proliferation even in irradiated subjects.
Collapse
Affiliation(s)
- Mario Vitacolonna
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Djeda Belharazem
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Patrick Maier
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Germany
| | - Peter Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Eric Dominic Roessner
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Centre Mannheim, University of Heidelberg, Germany
- * E-mail:
| |
Collapse
|
8
|
Gene therapy for radioprotection. Cancer Gene Ther 2015; 22:172-80. [PMID: 25721205 DOI: 10.1038/cgt.2015.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 01/22/2015] [Indexed: 11/08/2022]
Abstract
Radiation therapy is a critical component of cancer treatment with over half of patients receiving radiation during their treatment. Despite advances in image-guided therapy and dose fractionation, patients receiving radiation therapy are still at risk for side effects due to off-target radiation damage of normal tissues. To reduce normal tissue damage, researchers have sought radioprotectors, which are agents capable of protecting tissue against radiation by preventing radiation damage from occurring or by decreasing cell death in the presence of radiation damage. Although much early research focused on small-molecule radioprotectors, there has been a growing interest in gene therapy for radioprotection. The amenability of gene therapy vectors to targeting, as well as the flexibility of gene therapy to accomplish ablation or augmentation of biologically relevant genes, makes gene therapy an excellent strategy for radioprotection. Future improvements to vector targeting and delivery should greatly enhance radioprotection through gene therapy.
Collapse
|
9
|
Kirschner S, Felix MC, Hartmann L, Bierbaum M, Maros ME, Kerl HU, Wenz F, Glatting G, Kramer M, Giordano FA, Brockmann MA. In vivo micro-CT imaging of untreated and irradiated orthotopic glioblastoma xenografts in mice: capabilities, limitations and a comparison with bioluminescence imaging. J Neurooncol 2015; 122:245-54. [PMID: 25605299 DOI: 10.1007/s11060-014-1708-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/24/2014] [Indexed: 11/28/2022]
Abstract
Small animal imaging is of increasing relevance in biomedical research. Studies systematically assessing the diagnostic accuracy of contrast-enhanced in vivo micro-CT of orthotopic glioma xenografts in mice do not exist. NOD/SCID/γc(-/-) mice (n = 27) underwent intracerebral implantation of 2.5 × 10(6) GFP-Luciferase-transduced U87MG cells. Mice underwent bioluminescence imaging (BLI) to detect tumor growth and afterwards repeated contrast-enhanced (300 µl Iomeprol i.v.) micro-CT imaging (80 kV, 75 µAs, 360° rotation, 1,000 projections, 33 s scan time, resolution 40 × 40 × 53 µm, 0.5 Gy/scan). Presence of tumors, tumor diameter and tumor volume in micro-CT were rated by two independent readers. Results were compared with histological analyses. Six mice with tumors confirmed by micro-CT received fractionated irradiation (3 × 5 Gy every other day) using the micro-CT (5 mm pencil beam geometry). Repeated micro-CT scans were tolerated well. Tumor engraftment rate was 74 % (n = 20). In micro-CT, mean tumor volume was 30 ± 33 mm(3), and the smallest detectable tumor measured 360 × 620 µm. The inter-rater agreement (n = 51 micro-CT scans) for the item tumor yes/no was excellent (Spearman-Rho = 0.862, p < 0.001). Sensitivity and specificity of micro-CT were 0.95 and 0.71, respectively (PPV = 0.91, NPV = 0.83). BLI on day 21 after tumor implantation had a sensitivity and specificity of 0.90 and 1.0, respectively (PPV = 1.0, NPV = 0.5). Maximum tumor diameter and volume in micro-CT and histology correlated excellently (tumor diameter: 0.929, p < 0.001; tumor volume: 0.969, p < 0.001, n = 17). Irradiated animals showed a large central tumor necrosis. Longitudinal contrast enhanced micro-CT imaging of brain tumor growth in live mice is feasible at high sensitivity levels and with excellent inter-rater agreement and allows visualization of radiation effects.
Collapse
Affiliation(s)
- Stefanie Kirschner
- Department of Neuroradiology, Medical Faculty Mannheim, University, Medical Center Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Radioprotection of normal tissue cells. Strahlenther Onkol 2014; 190:745-52. [DOI: 10.1007/s00066-014-0637-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/05/2014] [Indexed: 12/13/2022]
|
11
|
Huber O, Brunner A, Maier P, Kaufmann R, Couraud PO, Cremer C, Fricker G. Localization microscopy (SPDM) reveals clustered formations of P-glycoprotein in a human blood-brain barrier model. PLoS One 2012; 7:e44776. [PMID: 22984556 PMCID: PMC3440331 DOI: 10.1371/journal.pone.0044776] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/07/2012] [Indexed: 11/24/2022] Open
Abstract
P-glycoprotein (Pgp; also known as MDR1, ABCB1) is the most important and best studied efflux transporter at the blood-brain barrier (BBB); however, the organization of Pgp is unknown. The aim of this study was to employ the recently developed super-resolution fluorescence microscopy method spectral precision distance microscopy/spectral position determination microscopy (SPDM) to investigate the spatial distribution of Pgp in the luminal plasma membrane of brain capillary endothelial cells. Potential disturbing effects of cell membrane curvatures on the distribution analysis are addressed with computer simulations. Immortalized human cerebral microvascular endothelial cells (hCMEC/D3) served as a model of human BBB. hCMEC/D3 cells were transduced with a Pgp-green fluorescent protein (GFP) fusion protein incorporated in a lentivirus-derived vector. The expression and localization of the Pgp-GFP fusion protein was visualized by SPDM. The limited resolution of SPDM in the z-direction leads to a projection during the imaging process affecting the appeared spatial distribution of fluorescence molecules in the super-resolution images. Therefore, simulations of molecule distributions on differently curved cell membranes were performed and their projected spatial distribution was investigated. Function of the fusion protein was confirmed by FACS analysis after incubation of cells with the fluorescent probe eFluxx-ID Gold in absence and presence of verapamil. More than 112,000 single Pgp-GFP molecules (corresponding to approximately 5,600 Pgp-GFP molecules per cell) were detected by SPDM with an averaged spatial resolution of approximately 40 nm in hCMEC/D3 cells. We found that Pgp-GFP is distributed in clustered formations in hCMEC/D3 cells while the influence of present random cell membrane curvatures can be excluded based on the simulation results. Individual formations are distributed randomly over the cell membrane.
Collapse
Affiliation(s)
- Olga Huber
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Alexander Brunner
- Kirchhoff-Institute for Physics, University of Heidelberg, Heidelberg, Germany
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Maier
- Department of Radiation Oncology, Mannheim Medical Centre, University of Heidelberg, Mannheim, Germany
| | - Rainer Kaufmann
- Kirchhoff-Institute for Physics, University of Heidelberg, Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Christoph Cremer
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
- Kirchhoff-Institute for Physics, University of Heidelberg, Heidelberg, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
12
|
|
13
|
Veldwijk MR, Trah J, Wang M, Maier P, Fruehauf S, Zeller WJ, Herskind C, Wenz F. Overexpression of Manganese Superoxide Dismutase Does Not Increase Clonogenic Cell Survival Despite Effect on Apoptosis in Irradiated Lymphoblastoid Cells. Radiat Res 2011; 176:725-31. [DOI: 10.1667/rr2651.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Heckmann D, Laufs S, Maier P, Zucknick M, Giordano FA, Veldwijk MR, Eckstein V, Wenz F, Zeller WJ, Fruehauf S, Allgayer H. A Lentiviral CXCR4 overexpression and knockdown model in colorectal cancer cell lines reveals plerixafor-dependent suppression of SDF-1α-induced migration and invasion. Oncol Res Treat 2011; 34:502-8. [PMID: 21985848 DOI: 10.1159/000332390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The development of distant metastasis is associated with poor outcome in patients with colorectal cancer (CRC). The stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) have pivotal roles in the chemotaxis of migrating tumor cells during metastasis. Thus, hampering the SDF-1/CXCR4 cross-talk is a promising strategy to suppress metastasis. METHODS We investigated the invasive behavior of the lentivirally CXCR4 overexpressing CRC cell lines SW480, SW620 and RKO in chemotaxis and invasion assays toward an SDF-1α gradient. Low endogenous CXCR4 expression levels were determined by quantitative realtime polymerase chain reaction (PCR) and fluorescence-activated cell sorting (FACS) analyses. RESULTS A lentiviral CXCR4 overexpression and knockdown model was established in these CRC cells. In transwell migration assays, CXCR4 overexpression favored chemotaxis and invasion of cells in all 3 lines depending on an SDF-1α gradient (p < 0.001 vs. untransduced cells). Functional CXCR4 knockdown using lentiviral short hairpin RNA (shRNA) vectors significantly decreased the migration behavior in CRC cell lines (p < 0.001), confirming a CXCR4-specific effect. Pharmacologic inhibition of the SDF-1α/CXCR4 interaction by the bicyclam Plerixafor(TM) at 100 μM significantly abrogated CXCR4-dependent migration and invasion through Matrigel(TM) (SW480, SW620, RKO; p < 0.05). CONCLUSION Our results indicate that a CXCR4-antagonistic therapy might prevent tumor cell dissemination and metastasis in CRC patients, consequently improving survival.
Collapse
Affiliation(s)
- Doreen Heckmann
- Molecular Oncology of Solid Tumors, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Epithelial-mesenchymal-transition induced by EGFR activation interferes with cell migration and response to irradiation and cetuximab in head and neck cancer cells. Radiother Oncol 2011; 101:158-64. [PMID: 21665310 DOI: 10.1016/j.radonc.2011.05.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE The role of epithelial-mesenchymal transition (EMT) in the poor outcome of EGFR-overexpressing SCCHN was evaluated. MATERIAL AND METHODS SCCHN cell lines were characterized for their cell morphology and expression of EGFR and the EMT-associated factors E-cadherin, vimentin and Snail1. The migratory potential of cells was assessed in motility assays. Response to irradiation and cetuximab was determined using clonogenic survival assays. RESULTS High basal expression of E-cadherin but low to absent vimentin expression could be observed in all SCCHN cell lines. Although E-cadherin expression levels did not change after treatment with EGF we observed a significant change in cell morphology resembling EMT. SCCHN cells with high basal levels of Snail1 resulting from constitutive EGFR activation were characterized by mesenchymal-like morphology, elevated migratory potential, reduced sensitivity to irradiation and cetuximab but increased sensitivity to the combined treatment. CONCLUSIONS Autocrine activation of EGFR leading to EMT is associated with a metastatic phenotype and reduced sensitivity of SCCHN cells to single-modality treatment with cetuximab or irradiation. The potential of Snail1 as biomarker for selection of patients who will mostly benefit from a combination of cetuximab and radiotherapy has to be evaluated in future clinical studies.
Collapse
|
16
|
|
17
|
RNA interference targeting slug increases cholangiocarcinoma cell sensitivity to cisplatin via upregulating PUMA. Int J Mol Sci 2011; 12:385-400. [PMID: 21339993 PMCID: PMC3039959 DOI: 10.3390/ijms12010385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/17/2022] Open
Abstract
Slug is an E-cadherin repressor and a suppressor of PUMA (p53 upregulated modulator of apoptosis) and it has recently been demonstrated that Slug plays an important role in controlling apoptosis. In this study, we examined whether Slug's ability to silence expression suppresses the growth of cholangiocarcinoma cells and/or sensitizes cholangiocarcinoma cells to chemotherapeutic agents through induction of apoptosis. We targeted the Slug gene using siRNA (Slug siRNA) via full Slug cDNA plasmid (Slug cDNA) transfection of cholangiocarcinoma cells. Slug siRNA, cisplatin, or Slug siRNA in combination with cisplatin, were used to treat cholangiocarcinoma cells in vitro. Western blot was used to detect the expression of Slug, PUMA, and E-cadherin protein. TUNEL, Annexin V Staining, and cell cycle analysis were used to detect apoptosis. A nude mice subcutaneous xenograft model of QBC939 cells was used to assess the effect of Slug silencing and/or cisplatin on tumor growth. Immunohistochemical staining was used to analyze the expression of Slug and PUMA. TUNEL was used to detect apoptosis in vivo. The results showed that PUMA and E-cadherin expression in cholangiocarcinoma cells is Slug dependent. We demonstrated that Slug silencing and cisplatin both promote apoptosis by upregulation of PUMA, not by upregulation of E-cadherin. Slug silencing significantly sensitized cholangiocarcinoma cells to cisplatin through upregulation of PUMA. Finally, we showed that Slug silencing suppressed the growth of QBC939 xenograft tumors and sensitized the tumor cells to cisplatin through PUMA upregulation and induction of apoptosis. Our findings indicate that Slug is an important modulator of the therapeutic response of cholangiocarcinoma cells and is potentially useful as a sensitizer in cholangiocarcinoma therapy. One of the mechanisms is the regulation of PUMA by Slug.
Collapse
|
18
|
Slug inhibition upregulates radiation-induced PUMA activity leading to apoptosis in cholangiocarcinomas. Med Oncol 2010; 28 Suppl 1:S301-9. [PMID: 21120639 DOI: 10.1007/s12032-010-9759-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/16/2010] [Indexed: 01/06/2023]
Abstract
Resistance of cholangiocarcinoma to irradiation therapy is a major problem in cancer treatment. Slug, a snail family transcription factor, is a suppressor of PUMA (p53 upregulated modulator of apoptosis), which has been shown to be involved in the control of apoptosis. In this study, we investigated whether the modulation of Slug expression, using adeno-associated-virus-mediated transfer of siRNA targeting Slug gene (rAAV2-Slug siRNA), affects cholangiocarcinoma sensitivity to radiation. In the present study, we used rAAV2-Slug siRNA to downregulate the expression of Slug in QBC939 cholangiocarcinoma cell lines in vitro before γ-irradiation. In vivo studies were done with orthotopic cholangiocarcinoma, and radiosensitivity was evaluated both in vitro and in vivo. rAAV2-Slug siRNA transfection resulted in downregulation of the levels of Slug in QBC939 cells. In addition, rAAV2-Slug siRNA, in combination with radiation, increased levels of the PUMA, which contributes to the radiosensitivity of cholangiocarcinomas. Finally, treatment with rAAV2-Slug siRNA plus γ-irradiation completely regressed tumor growth in orthotopic cholangiocarcinomas model. In summary, integrating gene therapy with radiotherapy could have a synergistic effect, thereby improving the survival of patients with cholangiocarcinomas.
Collapse
|
19
|
Overexpression of Caveolin-1 in Lymphoblastoid TK6 Cells Enhances Proliferation After Irradiation with Clinically Relevant Doses. Strahlenther Onkol 2010; 186:99-106. [DOI: 10.1007/s00066-010-2029-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 10/15/2009] [Indexed: 12/23/2022]
|