1
|
Strigari L, Strolin S, Morganti AG, Bartoloni A. Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships. Front Public Health 2021; 9:733337. [PMID: 34820349 PMCID: PMC8606590 DOI: 10.3389/fpubh.2021.733337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Space radiobiology is an interdisciplinary science that examines the biological effects of ionizing radiation on humans involved in aerospace missions. The dose-effect models are one of the relevant topics of space radiobiology. Their knowledge is crucial for optimizing radioprotection strategies (e.g., spaceship and lunar space station-shielding and lunar/Mars village design), the risk assessment of the health hazard related to human space exploration, and reducing damages induced to astronauts from galactic cosmic radiation. Dose-effect relationships describe the observed damages to normal tissues or cancer induction during and after space flights. They are developed for the various dose ranges and radiation qualities characterizing the actual and the forecast space missions [International Space Station (ISS) and solar system exploration]. Based on a Pubmed search including 53 papers reporting the collected dose-effect relationships after space missions or in ground simulations, 7 significant dose-effect relationships (e.g., eye flashes, cataract, central nervous systems, cardiovascular disease, cancer, chromosomal aberrations, and biomarkers) have been identified. For each considered effect, the absorbed dose thresholds and the uncertainties/limitations of the developed relationships are summarized and discussed. The current knowledge on this topic can benefit from further in vitro and in vivo radiobiological studies, an accurate characterization of the quality of space radiation, and the numerous experimental dose-effects data derived from the experience in the clinical use of ionizing radiation for diagnostic or treatments with doses similar to those foreseen for the future space missions. The growing number of pooled studies could improve the prediction ability of dose-effect relationships for space exposure and reduce their uncertainty level. Novel research in the field is of paramount importance to reduce damages to astronauts from cosmic radiation before Beyond Low Earth Orbit exploration in the next future. The study aims at providing an overview of the published dose-effect relationships and illustrates novel perspectives to inspire future research.
Collapse
Affiliation(s)
- Lidia Strigari
- Department of Medical Physics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology Center, School of Medicine, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | | |
Collapse
|
2
|
Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life (Basel) 2021; 11:life11080829. [PMID: 34440577 PMCID: PMC8398261 DOI: 10.3390/life11080829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Space radiation is one of the principal environmental factors limiting the human tolerance for space travel, and therefore a primary risk in need of mitigation strategies to enable crewed exploration of the solar system. METHODS We summarize the current state of knowledge regarding potential means to reduce the biological effects of space radiation. New countermeasure strategies for exploration-class missions are proposed, based on recent advances in nutrition, pharmacologic, and immune science. RESULTS Radiation protection can be categorized into (1) exposure-limiting: shielding and mission duration; (2) countermeasures: radioprotectors, radiomodulators, radiomitigators, and immune-modulation, and; (3) treatment and supportive care for the effects of radiation. Vehicle and mission design can augment the overall exposure. Testing in terrestrial laboratories and earth-based exposure facilities, as well as on the International Space Station (ISS), has demonstrated that dietary and pharmacologic countermeasures can be safe and effective. Immune system modulators are less robustly tested but show promise. Therapies for radiation prodromal syndrome may include pharmacologic agents; and autologous marrow for acute radiation syndrome (ARS). CONCLUSIONS Current radiation protection technology is not yet optimized, but nevertheless offers substantial protection to crews based on Lunar or Mars design reference missions. With additional research and human testing, the space radiation risk can be further mitigated to allow for long-duration exploration of the solar system.
Collapse
Affiliation(s)
| | - Radina Khalid
- School of Engineering, Rice University, Houston, TX 77005, USA;
| | - Octav Cristea
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Jennifer A. Lemon
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Douglas R. Boreham
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Dmitri Popov
- Advanced Medical Technologies and Systems Inc., Richmond Hill, ON L4B 1N1, Canada;
| | | | - Nandita Ramkumar
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeffrey A. Jones
- Center for Space Medicine, Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
3
|
Chatterjee S, Pietrofesa RA, Park K, Tao JQ, Carabe-Fernandez A, Berman AT, Koumenis C, Sielecki T, Christofidou-Solomidou M. LGM2605 Reduces Space Radiation-Induced NLRP3 Inflammasome Activation and Damage in In Vitro Lung Vascular Networks. Int J Mol Sci 2019; 20:ijms20010176. [PMID: 30621290 PMCID: PMC6337675 DOI: 10.3390/ijms20010176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/29/2022] Open
Abstract
Updated measurements of charged particle fluxes during the transit from Earth to Mars as well as on site measurements by Curiosity of Martian surface radiation fluxes identified potential health hazards associated with radiation exposure for human space missions. Designing mitigation strategies of radiation risks to astronauts is critical. We investigated radiation-induced endothelial cell damage and its mitigation by LGM2605, a radioprotector with antioxidant and free radical scavenging properties. We used an in vitro model of lung vascular networks (flow-adapted endothelial cells; FAECs), exposed to gamma rays, low/higher linear energy transfer (LET) protons (3⁻4 or 8⁻10 keV/µm, respectively), and mixed field radiation sources (gamma and protons), given at mission-relevant doses (0.25 gray (Gy)⁻1 Gy). We evaluated endothelial inflammatory phenotype, NLRP3 inflammasome activation, and oxidative cell injury. LGM2605 (100 µM) was added 30 min post radiation exposure and gene expression changes evaluated 24 h later. Radiation induced a robust increase in mRNA levels of antioxidant enzymes post 0.25 Gy and 0.5 Gy gamma radiation, which was significantly decreased by LGM2605. Intercellular cell adhesion molecule-1 (ICAM-1) and NOD-like receptor protein 3 (NLRP3) induction by individual or mixed-field exposures were also significantly blunted by LGM2605. We conclude that LGM2605 is a likely candidate to reduce tissue damage from space-relevant radiation exposure.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Ralph A Pietrofesa
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Kyewon Park
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Jian-Qin Tao
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Alejandro Carabe-Fernandez
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Abigail T Berman
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | | - Melpo Christofidou-Solomidou
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer. Sci Rep 2018; 8:6709. [PMID: 29712937 PMCID: PMC5928241 DOI: 10.1038/s41598-018-24755-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56Fe and 28Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56Fe ion sensitive sites, but not those affected by X ray or 28Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.
Collapse
|
5
|
Smirnova OA, Cucinotta FA. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions. LIFE SCIENCES IN SPACE RESEARCH 2018; 16:76-83. [PMID: 29475522 DOI: 10.1016/j.lssr.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can also be used on the phase of the real-time responses during the space mission to make the decisions on the operational application of appropriate countermeasures to minimize the risks of occurrences of leukemia, especially, for emergency cases.
Collapse
Affiliation(s)
- Olga A Smirnova
- Federal State Unitary Enterprise Research and Technical Center of Radiation-Chemical Safety and Hygiene, Moscow, Russian Federation
| | - Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
6
|
Guo J, Zeitlin C, Wimmer-Schweingruber R, Hassler DM, Köhler J, Ehresmann B, Böttcher S, Böhm E, Brinza DE. Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15. LIFE SCIENCES IN SPACE RESEARCH 2017; 14:12-17. [PMID: 28887938 DOI: 10.1016/j.lssr.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models.
Collapse
Affiliation(s)
- Jingnan Guo
- Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Cary Zeitlin
- Leidos, NASA Johnson Space Center, Houston, Texas, USA
| | | | - Donald M Hassler
- Southwest Research Institute, Space Science and Engineering Division, Boulder, CO, USA; Institut dAstrophysique Spatiale, Orsay, France
| | - Jan Köhler
- Thales Electronic Systems GmbH, Kiel, Germany
| | - Bent Ehresmann
- Southwest Research Institute, Space Science and Engineering Division, Boulder, CO, USA
| | | | - Eckart Böhm
- Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - David E Brinza
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
7
|
Werner E, Wang Y, Doetsch PW. A Single Exposure to Low- or High-LET Radiation Induces Persistent Genomic Damage in Mouse Epithelial Cells In Vitro and in Lung Tissue. Radiat Res 2017; 188:373-380. [PMID: 28753066 DOI: 10.1667/rr14685.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposures to low- and high-linear energy transfer (LET) radiation induce clustered damage in DNA that is difficult to repair. These lesions are manifested as DNA-associated foci positive for DNA repair proteins and have been shown to persist in vitro and in vivo for days in several cell types and tissues in response to low-LET radiation. Although in some experimental conditions these residual foci have been linked with genomic instability and chromosomal aberrations, it remains poorly understood what type of damage they represent. Because high-LET radiation induces complex DNA lesions more efficiently than low-LET radiation, we compared the efficacy of several heavy ions (oxygen, silicon and iron) in a range (17 , 70 and 175 keV/μm, respectively) of LET and X rays at a 1 Gy dose. Persistent genomic damage was measured by γ-H2AX-53BP1-positive residual foci and micronucleus levels during the first three days and up to a week after in vitro and in vivo irradiation in lung cells and tissue. We demonstrate that in an in vitro irradiated mouse bronchial epithelial cell line, the expression of residual foci is readily detectable at 24 h with levels declining in the following 72 h postirradiation, but still persisting elevated over background at day 7. At this time, foci numbers are low but significant and proportional to the dose and quality of the radiation. The expression of residual foci in vitro was mirrored by increased micronuclei generation measured in cytokinesis-blocked cells, indicating long-term, persistent effects of genomic damage in this cell type. We also tested the expression of residual foci in lung tissue of C57BL/6 mice that received whole-body X-ray or heavy-ion irradiation. We found that at day 7 postirradiation, Clara/Club cells, but not pro-SPC-positive pneumocytes, contained a subpopulation of cells expressing γ-H2AX-53BP1-positive foci in a radiation quality-dependent manner. These findings suggest that in vivo persistent DNA repair foci reflect the initial genotoxic damage induced by radiation and a differential vulnerability among cells in the lung.
Collapse
Affiliation(s)
- Erica Werner
- Department of a Biochemistry, Emory University School of Medicine, Atlanta, Georgia.,b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Ya Wang
- b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Paul W Doetsch
- Department of a Biochemistry, Emory University School of Medicine, Atlanta, Georgia.,b Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia.,c Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
Fernandez-Gonzalo R, Baatout S, Moreels M. Impact of Particle Irradiation on the Immune System: From the Clinic to Mars. Front Immunol 2017; 8:177. [PMID: 28275377 PMCID: PMC5319970 DOI: 10.3389/fimmu.2017.00177] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Despite the generalized use of photon-based radiation (i.e., gamma rays and X-rays) to treat different cancer types, particle radiotherapy (i.e., protons and carbon ions) is becoming a popular, and more effective tool to treat specific tumors due to the improved physical properties and biological effectiveness. Current scientific evidence indicates that conventional radiation therapy affects the tumor immunological profile in a particular manner, which in turn, might induce beneficial effects both at local and systemic (i.e., abscopal effects) levels. The interaction between radiotherapy and the immune system is being explored to combine immune and radiation (including particles) treatments, which in many cases have a greater clinical effect than any of the therapies alone. Contrary to localized, clinical irradiation, astronauts are exposed to whole body, chronic cosmic radiation, where protons and heavy ions are an important component. The effects of this extreme environment during long periods of time, e.g., a potential mission to Mars, will have an impact on the immune system that could jeopardize the health of the astronauts, hence the success of the mission. To this background, the purpose of this mini review is to briefly present the current knowledge in local and systemic immune alterations triggered by particle irradiation and to propose new lines of future research. Immune effects induced by particle radiation relevant to clinical applications will be covered, together with examples of combined radiotherapy and immunotherapy. Then, the focus will move to outer space, where the immune system alterations induced by cosmic radiation during spaceflight will be discussed.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalo
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| | - Sarah Baatout
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| | - Marjan Moreels
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| |
Collapse
|
9
|
Hanu AR, Barberiz J, Bonneville D, Byun SH, Chen L, Ciambella C, Dao E, Deshpande V, Garnett R, Hunter SD, Jhirad A, Johnston EM, Kordic M, Kurnell M, Lopera L, McFadden M, Melnichuk A, Nguyen J, Otto A, Scott R, Wagner DL, Wiendels M. NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit. Radiat Res 2016; 187:42-49. [PMID: 28001909 DOI: 10.1667/rr14491.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions. The primary objective of the NEUDOSE CubeSat is to map the in situ lineal energy spectra produced by charged particles and neutrons in LEO where most of the preparatory activities for future interplanetary missions are currently taking place. To perform these measurements, the NEUDOSE CubeSat is equipped with the Charged & Neutral Particle Tissue Equivalent Proportional Counter (CNP-TEPC), an advanced radiation monitoring instrument that uses active coincidence techniques to separate the interactions of charged particles and neutrons in real time. The NEUDOSE CubeSat, currently under development at McMaster University, provides a modern approach to test the CNP-TEPC instrument directly in the unique environment of outer space while simultaneously collecting new georeferenced lineal energy spectra of the radiation environment in LEO.
Collapse
Affiliation(s)
- A R Hanu
- a NASA Goddard Space Flight Center, Greenbelt, Maryland 20771
| | - J Barberiz
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - D Bonneville
- c Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - S H Byun
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - L Chen
- c Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - C Ciambella
- f Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - E Dao
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - V Deshpande
- e Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - R Garnett
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - S D Hunter
- a NASA Goddard Space Flight Center, Greenbelt, Maryland 20771
| | - A Jhirad
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - E M Johnston
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - M Kordic
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - M Kurnell
- c Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - L Lopera
- f Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - M McFadden
- d Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - A Melnichuk
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - J Nguyen
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - A Otto
- e Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - R Scott
- e Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - D L Wagner
- c Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - M Wiendels
- Department of bElectrical and Computer Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
10
|
Moding EJ, Min HD, Castle KD, Ali M, Woodlief L, Williams N, Ma Y, Kim Y, Lee CL, Kirsch DG. An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer. JCI Insight 2016; 1. [PMID: 27453951 DOI: 10.1172/jci.insight.86698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The tumor suppressor p53 blocks tumor progression in multiple tumor types. Radiation-induced cancer following exposure to radiation therapy or space travel may also be regulated by p53 because p53 has been proposed to respond to DNA damage to suppress tumorigenesis. Here, we investigate the role of p53 in lung carcinogenesis and lymphomagenesis in LA-1 KrasG12D mice with wild-type p53 or an extra copy of p53 (super p53) exposed to fractionated total body irradiation with low linear energy transfer (low-LET) X-rays or high-LET iron ions and compared tumor formation in these mice with unirradiated controls. We found that an additional copy of p53 suppressed both Kras-driven lung tumor and lymphoma development in the absence of radiation. However, an additional copy of p53 did not affect lymphoma development following low- or high-LET radiation exposure and was unable to suppress radiation-induced expansion of thymocytes with mutated Kras. Moreover, radiation exposure increased lung tumor size in super p53 but not wild-type p53 mice. These results demonstrate that although p53 suppresses the development of spontaneous tumors expressing KrasG12D, in the context of exposure to ionizing radiation, an extra copy of p53 does not protect against radiation-induced lymphoma and may promote KrasG12D mutant lung cancer.
Collapse
Affiliation(s)
- Everett J Moding
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Hooney D Min
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Katherine D Castle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Moiez Ali
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Loretta Woodlief
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Nerissa Williams
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Cucinotta FA. Review of NASA approach to space radiation risk assessments for Mars exploration. HEALTH PHYSICS 2015; 108:131-142. [PMID: 25551493 DOI: 10.1097/hp.0000000000000255] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.
Collapse
Affiliation(s)
- Francis A Cucinotta
- *University of Nevada, Las Vegas. Department of Health Physics and Diagnostic Sciences, 4505 S. Maryland Parkway, Box 453037, Las Vegas NV, 89154-3037
| |
Collapse
|
12
|
Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Schweitzer KS, Berdyshev EV, McCarthy M, Corbitt A, Alwood JS, Yu Y, Globus RK, Solomides CC, Ullrich RL, Petrache I. Space radiation-associated lung injury in a murine model. Am J Physiol Lung Cell Mol Physiol 2014; 308:L416-28. [PMID: 25526737 DOI: 10.1152/ajplung.00260.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania;
| | - Ralph A Pietrofesa
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kelly S Schweitzer
- Department of Medicine, Pulmonary and Critical Care Division, Indiana University School of Medicine, Indianapolis, Indiana
| | - Evgeny V Berdyshev
- Department of Medicine University of Illinois at Chicago, Chicago, Illinois
| | | | - Astrid Corbitt
- University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Joshua S Alwood
- Oak Ridge Associated Universities, NASA Postdoctoral Program, Moffett Field, California
| | - Yongjia Yu
- University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Ruth K Globus
- NASA Ames Research Center, Moffett Field, California
| | | | | | - Irina Petrache
- Department of Medicine, Pulmonary and Critical Care Division, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
13
|
Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Ehresmann B, Rafkin S, Eigenbrode JL, Brinza DE, Weigle G, Böttcher S, Böhm E, Burmeister S, Guo J, Köhler J, Martin C, Reitz G, Cucinotta FA, Kim MH, Grinspoon D, Bullock MA, Posner A, Gómez-Elvira J, Vasavada A, Grotzinger JP. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover. Science 2013; 343:1244797. [PMID: 24324275 DOI: 10.1126/science.1244797] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.
Collapse
|
14
|
Jacobus JA, Duda CG, Coleman MC, Martin SM, Mapuskar K, Mao G, Smith BJ, Aykin-Burns N, Guida P, Gius D, Domann FE, Knudson CM, Spitz DR. Low-dose radiation-induced enhancement of thymic lymphomagenesis in Lck-Bax mice is dependent on LET and gender. Radiat Res 2013; 180:156-65. [PMID: 23819597 DOI: 10.1667/rr3293.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hypothesis that mitochondrial dysfunction and increased superoxide levels in thymocytes over expressing Bax (Lck-Bax1 and Lck-Bax38&1) contributes to lymphomagenesis after low-dose radiation was tested. Lck-Bax1 single-transgenic and Lck-Bax38&1 double-transgenic mice were exposed to single whole-body doses of 10 or 100 cGy of (137)Cs or iron ions (1,000 MeV/n, 150 keV/μm) or silicon ions (300 MeV/n, 67 keV/μm). A 10 cGy dose of (137)Cs significantly increased the incidence and onset of thymic lymphomas in female Lck-Bax1 mice. In Lck-Bax38&1 mice, a 100 cGy dose of high-LET iron ions caused a significant dose dependent acceleration of lymphomagenesis in both males and females that was not seen with silicon ions. To determine the contribution of mitochondrial oxidative metabolism, Lck-Bax38&1 over expressing mice were crossed with knockouts of the mitochondrial protein deacetylase, Sirtuin 3 (Sirt3), which regulates superoxide metabolism. Sirt3(-/-)/Lck-Bax38&1 mice demonstrated significant increases in thymocyte superoxide levels and acceleration of lymphomagenesis (P < 0.001). These results show that lymphomagenesis in Bax over expressing animals is enhanced by radiation exposure in both an LET and gender dependent fashion. These findings support the hypothesis that mitochondrial dysfunction leads to increased superoxide levels and accelerates lymphomagenesis in Lck-Bax transgenic mice.
Collapse
Affiliation(s)
- James A Jacobus
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zeitlin C, Hassler DM, Cucinotta FA, Ehresmann B, Wimmer-Schweingruber RF, Brinza DE, Kang S, Weigle G, Böttcher S, Böhm E, Burmeister S, Guo J, Köhler J, Martin C, Posner A, Rafkin S, Reitz G. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 2013; 340:1080-4. [PMID: 23723233 DOI: 10.1126/science.1235989] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.
Collapse
Affiliation(s)
- C Zeitlin
- Southwest Research Institute, Boulder, CO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
George K, Rhone J, Beitman A, Cucinotta FA. Cytogenetic damage in the blood lymphocytes of astronauts: effects of repeat long-duration space missions. Mutat Res 2013; 756:165-9. [PMID: 23639573 DOI: 10.1016/j.mrgentox.2013.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 11/29/2022]
Abstract
Human missions onboard the International Space Station (ISS) are increasing in duration and several astronauts have now participated in second ISS increments. The radiation environment in space is very different from terrestrial radiation exposure and it is still unclear if space flight effects and radiation from repeat missions are simply additive, which potentially confounds the assessment of the cumulative risk of radiation exposure. It has been shown that single space missions of a few months or more on the ISS can induce measureable increases in the yield of chromosome damage in the blood lymphocytes of astronauts, and it appears that cytogenetic biodosimetry can be used reliably to estimate equivalent dose and radiation risk. We have now obtained direct in vivo measurements of chromosome damage in blood lymphocytes of five astronauts before and after their first and second long duration space flights. Chromosome damage was assessed by fluorescence in situ hybridization technique using three different chromosome painting probes. All astronauts showed an increase in total exchanges and translocations after both the first and second flight. Biological dose measured using either individual assessment or a population assessment supports an additive risk model.
Collapse
Affiliation(s)
- K George
- Wyle Science, Technology & Engineering Group, Houston, TX 77058, USA.
| | | | | | | |
Collapse
|
17
|
Cucinotta FA, Chappell LJ, Kim MHY, Wang M. Radiation carcinogenesis risk assessments for never-smokers. HEALTH PHYSICS 2012; 103:643-51. [PMID: 23032894 DOI: 10.1097/hp.0b013e318267b3ad] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cigarette smoking, which is presently associated with more than 20% of adult deaths in the United States, is a large confounder to radiation risk estimates derived from epidemiology data. Astronauts and other exposed groups are classified as never-smokers (NS), defined as lifetime use of less than 100 cigarettes. In the past, radiation risk estimates have been made using average U.S. population rates for cancer and all causes of death, which may lead to overestimation of radiation risks for NS. In this report, age- and gender-specific radiation carcinogenesis risk calculations for NS and the average U.S. population are compared. Lung is the major tissue site for smoking and radiation-related cancer. However, other radiogenic cancers where tobacco has been shown to increase population cancer rates are esophagus, oral cavity, salivary gland, bladder, stomach, liver, colorectal, and leukemia. After adjusting U.S. cancer rates to remove smoking effects, radiation risks for lung and other cancers were estimated using the multiplicative risk model and a mixture model, with weighted contributions for additive and multiplicative risk transfer. Radiation mortality risks for NS were reduced compared to the average U.S. population by more than 20% and 50% in the mixture model and multiplicative transfer models, respectively. The authors discuss possible mechanisms of cancer risks from radiation and tobacco that suggest multiplicative effects could occur. These results suggest that improved understanding of possible synergisms between cancer initiators and promoters, such as radiation and tobacco, would greatly improve risk estimates and reduce uncertainties for differentially exposed groups, including NS.
Collapse
Affiliation(s)
- Francis A Cucinotta
- NASA, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
The complex charged particle environments in space pose considerable challenges with regard to potential health consequences that can impact mission design and crew selection. The lack of knowledge of the biological effects of different ions in isolation and in combination is a particular concern because the risk uncertainties are very high for both cancer and non-cancer late effects. Reducing the uncertainties is of high priority. Two principal components of space radiation each raise different concerns. Solar particle events (SPE) occur sporadically and are comprised primarily of low- to moderate-energy protons. Galactic cosmic radiation (GCR) is isotropic and relatively invariant in dose rate. GCR is also dominated by protons, but the energy range is wider than in SPE. In addition, the contribution of other light and heavy ions to the health risks from GCR must be addressed. This paper will introduce the principal issues under consideration for space radiation protection.
Collapse
Affiliation(s)
- Amy Kronenberg
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | | |
Collapse
|
19
|
Against Lung Cancer Cells: To Be, or Not to Be, That Is the Problem. LUNG CANCER INTERNATIONAL 2012; 2012:659365. [PMID: 26316936 PMCID: PMC4437407 DOI: 10.1155/2012/659365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022]
Abstract
Tobacco smoke and radioactive radon gas impose a high risk for lung cancer. The radon-derived ionizing radiation and some components of cigarette smoke induce oxidative stress by generating reactive oxygen species (ROS). Respiratory lung cells are subject to the ROS that causes DNA breaks, which subsequently bring about DNA mutagenesis and are intimately linked with carcinogenesis. The damaged cells by oxidative stress are often destroyed through the active apoptotic pathway. However, the ROS also perform critical signaling functions in stress responses, cell survival, and cell proliferation. Some molecules enhance radiation-induced tumor cell killing via the reduction in DNA repair levels. Hence the DNA repair levels may be a novel therapeutic modality in overcoming drug resistance in lung cancer. Either survival or apoptosis, which is determined by the balance between DNA damage and DNA repair levels, may lender the major problems in cancer therapy. The purpose of this paper is to take a closer look at risk factor and at therapy modulation factor in lung cancer relevant to the ROS.
Collapse
|