1
|
De Vleeschauwer SI, van de Ven M, Oudin A, Debusschere K, Connor K, Byrne AT, Ram D, Rhebergen AM, Raeves YD, Dahlhoff M, Dangles-Marie V, Hermans ER. OBSERVE: guidelines for the refinement of rodent cancer models. Nat Protoc 2024; 19:2571-2596. [PMID: 38992214 DOI: 10.1038/s41596-024-00998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/23/2024] [Indexed: 07/13/2024]
Abstract
Existing guidelines on the preparation (Planning Research and Experimental Procedures on Animals: Recommendations for Excellence (PREPARE)) and reporting (Animal Research: Reporting of In Vivo Experiments (ARRIVE)) of animal experiments do not provide a clear and standardized approach for refinement during in vivo cancer studies, resulting in the publication of generic methodological sections that poorly reflect the attempts made at accurately monitoring different pathologies. Compliance with the 3Rs guidelines has mainly focused on reduction and replacement; however, refinement has been harder to implement. The Oncology Best-practices: Signs, Endpoints and Refinements for in Vivo Experiments (OBSERVE) guidelines are the result of a European initiative supported by EurOPDX and INFRAFRONTIER, and aim to facilitate the refinement of studies using in vivo cancer models by offering robust and practical recommendations on approaches to research scientists and animal care staff. We listed cancer-specific clinical signs as a reference point and from there developed sets of guidelines for a wide variety of rodent models, including genetically engineered models and patient derived xenografts. In this Consensus Statement, we systematically and comprehensively address refinement and monitoring approaches during the design and execution of murine cancer studies. We elaborate on the appropriate preparation of tumor-initiating biologicals and the refinement of tumor-implantation methods. We describe the clinical signs to monitor associated with tumor growth, the appropriate follow-up of animals tailored to varying clinical signs and humane endpoints, and an overview of severity assessment in relation to clinical signs, implantation method and tumor characteristics. The guidelines provide oncology researchers clear and robust guidance for the refinement of in vivo cancer models.
Collapse
Affiliation(s)
| | - Marieke van de Ven
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karlijn Debusschere
- Animal Core Facility VUB, Brussels, Belgium
- Core ARTH Animal Facilities, Medicine and Health Sciences Ghent University, Ghent, Belgium
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Doreen Ram
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Els R Hermans
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Lindeman LR, Jones KM, High RA, Howison CM, Shubitz LF, Pagel MD. Differentiating lung cancer and infection based on measurements of extracellular pH with acidoCEST MRI. Sci Rep 2019; 9:13002. [PMID: 31506562 PMCID: PMC6736855 DOI: 10.1038/s41598-019-49514-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/27/2019] [Indexed: 01/17/2023] Open
Abstract
Lung cancer diagnosis via imaging may be confounded by the presence of indolent infectious nodules in imaging studies. This issue is pervasive in the southwestern US where coccidioidomycosis (Valley Fever) is endemic. AcidoCEST MRI is a noninvasive imaging method that quantifies the extracellular pH (pHe) of tissues in vivo, allowing tumor acidosis to be used as a diagnostic biomarker. Using murine models of lung adenocarcinoma and coccidoidomycosis, we found that average lesion pHe differed significantly between tumors and granulomas. Our study shows that acidoCEST MRI is a promising tool for improving the specificity of lung cancer diagnosis.
Collapse
Affiliation(s)
- Leila R Lindeman
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Kyle M Jones
- Bioengineering Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Rachel A High
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | | | - Lisa F Shubitz
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, USA
| | - Mark D Pagel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Gomes AL, Kinchesh P, Gilchrist S, Allen PD, Lourenço LM, Ryan AJ, Smart SC. Cardio-Respiratory synchronized bSSFP MRI for high throughput in vivo lung tumour quantification. PLoS One 2019; 14:e0212172. [PMID: 30753240 PMCID: PMC6372180 DOI: 10.1371/journal.pone.0212172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
The identification and measurement of tumours is a key requirement in the study of tumour development in mouse models of human cancer. Disease burden in autochthonous tumours, such as those arising in the lung, can be seen with non-invasive imaging, but cannot be accurately measured using standard tools such as callipers. Lung imaging is further complicated in the mouse due to instabilities arising from the rapid but cyclic cardio-respiratory motions, and the desire to use free-breathing animals. Female A/JOlaHsd mice were either injected (i.p.) with PBS 0.1ml/10g body weight (n = 6), or 10% urethane/PBS 0.1ml/10g body weight (n = 12) to induce autochthonous lung tumours. Cardio-respiratory synchronised bSSFP MRI, at 200 μm isotropic resolution was performed at 8, 13 and 18 weeks post induction. Images from the same mouse at different time points were aligned using threshold-based segmented masks of the lungs (ITK-SNAP and MATLAB) and tumour volumes were determined via threshold-based segmentation (ITK-SNAP).Scan times were routinely below 10 minutes and tumours were readily identifiable. Image registration allowed serial measurement of tumour volumes as small as 0.056 mm3. Repetitive imaging did not lead to mouse welfare issues. We have developed a motion desensitised scan that enables high sensitivity MRI to be performed with high throughput capability of greater than 4 mice/hour. Image segmentation and registration allows serial measurement of individual, small tumours. This allows fast and highly efficient volumetric lung tumour monitoring in cohorts of 30 mice per imaging time point. As a result, adaptive trial study designs can be achieved, optimizing experimental and welfare outcomes.
Collapse
Affiliation(s)
- Ana L. Gomes
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Paul Kinchesh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stuart Gilchrist
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip D. Allen
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Luiza Madia Lourenço
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anderson J. Ryan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean C. Smart
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Yao Z, Yan LW, Wang T, Qiu S, Lin T, He FL, Yuan RH, Liu XL, Qi J, Zhu QT. A rapid micro-magnetic resonance imaging scanning for three-dimensional reconstruction of peripheral nerve fascicles. Neural Regen Res 2018; 13:1953-1960. [PMID: 30233069 PMCID: PMC6183031 DOI: 10.4103/1673-5374.238718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging (Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by 1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions (Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent (Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.
Collapse
Affiliation(s)
- Zhi Yao
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Li-Wei Yan
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Tao Wang
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Shuai Qiu
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Tao Lin
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Fu-Lin He
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Ru-Heng Yuan
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research, Guangzhou, Guangdong Province, China
| | - Xiao-Lin Liu
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, Guangdong Province, China
| | - Jian Qi
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, Guangdong Province, China
| | - Qing-Tang Zhu
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University; Center for Peripheral Nerve Tissue Engineering and Technology Research; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Müller A, Jagoda P, Fries P, Gräber S, Bals R, Buecker A, Jungnickel C, Beisswenger C. Three-dimensional ultrashort echo time MRI and Short T 2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice. Magn Reson Med 2017; 79:1052-1060. [PMID: 28497643 DOI: 10.1002/mrm.26741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the potential of 3D ultrashort echo time MRI and short T2 images generated by subtraction for determination of total tumor burden in lung cancer. METHODS As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. RESULTS Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. CONCLUSIONS Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University Hospital, Homburg, Germany
| | - Philippe Jagoda
- Clinic for Diagnostic and Interventional Radiology, Saarland University Hospital, Homburg, Germany
| | - Peter Fries
- Clinic for Diagnostic and Interventional Radiology, Saarland University Hospital, Homburg, Germany
| | - Stefan Gräber
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Robert Bals
- Department of Biostatistics and Medical Informatics, Institute for Epidemiology, Saarland University Hospital, Homburg, Germany
| | - Arno Buecker
- Clinic for Diagnostic and Interventional Radiology, Saarland University Hospital, Homburg, Germany
| | - Christopher Jungnickel
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology, and Respiratory Critical Care Medicine, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
6
|
Hutchinson ID, Olson J, Lindburg CA, Payne V, Collins B, Smith TL, Munley MT, Wheeler KT, Willey JS. Total-body irradiation produces late degenerative joint damage in rats. Int J Radiat Biol 2014; 90:821-30. [PMID: 24885745 DOI: 10.3109/09553002.2014.927935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Premature musculoskeletal joint failure is a major source of morbidity among childhood cancer survivors. Radiation effects on synovial joint tissues of the skeleton are poorly understood. Our goal was to assess long-term changes in the knee joint from skeletally mature rats that received total-body irradiation while skeletal growth was ongoing. MATERIALS AND METHODS 14 week-old rats were irradiated with 1, 3 or 7 Gy total-body doses of 18 MV X-rays. At 53 weeks of age, structural and compositional changes in knee joint tissues (articular cartilage, subchondral bone, and trabecular bone) were characterized using 7T MRI, nanocomputed tomography (nanoCT), microcomputed tomography (microCT), and histology. RESULTS T2 relaxation times of the articular cartilage were lower after exposure to all doses. Likewise, calcifications were observed in the articular cartilage. Trabecular bone microarchitecture was compromised in the tibial metaphysis at 7 Gy. Mild to moderate cartilage erosion was scored in the 3 and 7 Gy rats. CONCLUSIONS Late degenerative changes in articular cartilage and bone were observed after total-body irradiation in adult rats exposed prior to skeletal maturity. 7T MRI, microCT, nanoCT, and histology identified potential prognostic indicators of late radiation-induced joint damage.
Collapse
|
7
|
Wang F, Akashi K, Murakami Y, Inoue Y, Furuta T, Yamada H, Ohtomo K, Kiryu S. Detection of lung tumors in mice using a 1-tesla compact magnetic resonance imaging system. PLoS One 2014; 9:e94945. [PMID: 24743153 PMCID: PMC3990561 DOI: 10.1371/journal.pone.0094945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/20/2014] [Indexed: 11/18/2022] Open
Abstract
Due to their small size, lung tumors in rodents are typically investigated using high-field magnetic resonance (MR) systems (4.7 T or higher) to achieve higher signal-to-noise ratios, although low-field MR systems are less sensitive to susceptibility artifacts caused by air in the lung. We investigated the feasibility of detecting lung tumors in living, freely breathing mice with a 1-T compact permanent magnet MR system. In total, 4 mice were used, and MR images of mouse lungs were acquired using a T1-weighted three-dimensional fast low-angle shot sequence without cardiac or respiratory gating. The delineation and size of lung tumors were assessed and compared with histopathological findings. Submillimeter lesions were demonstrated as hyperintense, relative to the surrounding lung parenchyma, and were delineated clearly. Among the 13 lesions validated in histopathological sections, 11 were detected in MR images; the MR detection rate was thus 84.6%. A strong correlation was obtained in size measurements between MR images and histological sections. Thus, a dedicated low-field MR system can be used to detect lung tumors in living mice noninvasively without gating.
Collapse
Affiliation(s)
- Fang Wang
- Department of Radiology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Radiology, Qi Lu Hospital of Shandong University, Jinan, China
| | - Ken Akashi
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Toshihiro Furuta
- Department of Radiology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Haruyasu Yamada
- Department of Radiology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kuni Ohtomo
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeru Kiryu
- Department of Radiology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Thomas G, Betters JL, Lord CC, Brown AL, Marshall S, Ferguson D, Sawyer J, Davis MA, Melchior JT, Blume LC, Howlett AC, Ivanova PT, Milne SB, Myers DS, Mrak I, Leber V, Heier C, Taschler U, Blankman JL, Cravatt BF, Lee RG, Crooke RM, Graham MJ, Zimmermann R, Brown HA, Brown JM. The serine hydrolase ABHD6 Is a critical regulator of the metabolic syndrome. Cell Rep 2013; 5:508-20. [PMID: 24095738 DOI: 10.1016/j.celrep.2013.08.047] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 07/25/2013] [Accepted: 08/29/2013] [Indexed: 01/31/2023] Open
Abstract
The serine hydrolase α/β hydrolase domain 6 (ABHD6) has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG) in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs) to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6's role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.
Collapse
Affiliation(s)
- Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jenna L Betters
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Caleb C Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Amanda L Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,New Affiliation: Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195, USA
| | - Stephanie Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,New Affiliation: Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195, USA
| | - Daniel Ferguson
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,New Affiliation: Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195, USA
| | - Janet Sawyer
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew A Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - John T Melchior
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Lawrence C Blume
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen B Milne
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David S Myers
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Irina Mrak
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Vera Leber
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Jacqueline L Blankman
- Deparment of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Deparment of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard G Lee
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, CA 92010 USA
| | - Rosanne M Crooke
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, CA 92010 USA
| | - Mark J Graham
- Cardiovascular Group, Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, CA 92010 USA
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.,New Affiliation: Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195, USA
| |
Collapse
|