1
|
Dumit S, Miller G, Grémy O, Poudel D, Bertelli L, Klumpp JA. Chelation Modeling of a Plutonium-238 Inhalation Incident Treated with Delayed DTPA. Radiat Res 2023; 200:577-586. [PMID: 37956868 DOI: 10.1667/rade-23-00135.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023]
Abstract
This work describes an analysis, using a previously established chelation model, of the bioassay data collected from a worker who received delayed chelation therapy following a plutonium-238 inhalation. The details of the case have already been described in two publications. The individual was treated with Ca-DTPA via multiple intravenous injections and then nebulizations beginning several months after the intake and continuing for four years. The exact date and circumstances of the intake are unknown. However, interviews with the worker suggested that the intake occurred via inhalation of a soluble plutonium compound. The worker provided daily urine and fecal bioassay samples throughout the chelation treatment protocol, including samples collected before, during, and after the administration of Ca-DTPA. Unlike the previous two publications presenting this case, the current analysis explicitly models the combined biokinetics of the plutonium-DTPA chelate. Using the previously established chelation model, it was possible to fit the data through optimizing only the intake (day and magnitude), solubility, and absorbed fraction of nebulized Ca-DTPA. This work supports the hypothesis that the efficacy of the delayed chelation treatment observed in this case results mainly from chelation of cell-internalized plutonium by Ca-DTPA (intracellular chelation). It also demonstrates the validity of the previously established chelation model. As the bioassay data were modified to ensure data anonymization, the calculation of the "true" committed effective dose was not possible. However, the treatment-induced dose inhibition (in percentage) was calculated.
Collapse
Affiliation(s)
- Sara Dumit
- Los Alamos National Laboratory (LANL), Radiation Protection Division, Los Alamos, New Mexico 87545
| | - Guthrie Miller
- Unaffiliated (retired from Los Alamos National Laboratory), Santa Fe, New Mexico
| | - Olivier Grémy
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Deepesh Poudel
- Los Alamos National Laboratory (LANL), Radiation Protection Division, Los Alamos, New Mexico 87545
| | | | - John A Klumpp
- Los Alamos National Laboratory (LANL), Radiation Protection Division, Los Alamos, New Mexico 87545
| |
Collapse
|
2
|
Grémy O, Devilliers K, Miccoli L. Chelation therapy with 3,4,3-Li(1,2-HOPO) after pulmonary exposure to plutonium in rats. Chem Biol Interact 2023; 378:110488. [PMID: 37054935 DOI: 10.1016/j.cbi.2023.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Internal exposure to plutonium can occur through inhalation for the nuclear worker, but also for the public if the radionuclide was released into the atmosphere in the context of a nuclear accident or terrorist attack. DieThylenetriaminePentaAcetic acid (DTPA) is currently still the only authorized chelator that can be used to decorporate internalized plutonium. The Linear HydrOxyPyridinOne-based ligand named 3,4,3-Li(1,2-HOPO) remains the most promising drug candidate to replace it in the hopes of improving chelating treatment. This study aimed to assess the efficacy of 3,4,3-Li(1,2-HOPO) in removing plutonium from rats exposed to the lungs, depending on the timing and route of treatment, and almost always compared to DTPA at a ten-fold higher dose used as a reference chelator. First, early intravenous injection or inhalation of 3,4,3-Li(1,2-HOPO) demonstrated superior efficacy over DTPA in preventing plutonium accumulation in liver and bone in rats exposed by injection or lung intubation. However, this superiority of 3,4,3-Li(1,2-HOPO) was much less pronounced with delayed treatment. In rats given plutonium in the lungs, the experiments also showed that 3,4,3-Li-HOPO reduced pulmonary retention of plutonium more effectively than DTPA only when the chelators were injected early but not at delayed times, while it was always the better of the two chelators when they were inhaled. Under our experimental conditions, the rapid oral administration of 3,4,3-Li(1,2-HOPO) was successful in preventing systemic accumulation of plutonium, but not in decreasing lung retention. Thus, after exposure to plutonium by inhalation, the best emergency treatment would be the rapid inhalation of a 3,4,3-Li(1,2-HOPO) aerosol to limit pulmonary retention of plutonium and prevent extrapulmonary deposition of plutonium in target systemic tissues.
Collapse
Affiliation(s)
- Olivier Grémy
- Laboratoire de RadioToxicologie, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Saclay, Bruyères-le-Châtel, France.
| | - Karine Devilliers
- Laboratoire de RadioToxicologie, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Saclay, Bruyères-le-Châtel, France
| | - Laurent Miccoli
- Laboratoire de RadioToxicologie, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Saclay, Bruyères-le-Châtel, France
| |
Collapse
|
3
|
Wang X, Shi C, Guan J, Chen Y, Xu Y, Diwu J, Wang S. The development of molecular and nano actinide decorporation agents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Americium Inhalational Exposure with Successful Chelation Therapy. Disaster Med Public Health Prep 2021; 16:2185-2189. [PMID: 34399875 DOI: 10.1017/dmp.2021.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Americium is a man-made metal produced in very small quantities in nuclear reactors. Americium-241 is one of the radioactive isotopes of americium and has commercial applications, including use in smoke detectors. This is a case report of an occupational inhalation of americium-241, treated with both effective external decontamination and the use of diethylenetriamine pentaacetate to promote decorporation. This experience is significant because of the potential for americium or similar radionuclides to be used in "dirty" bombs or other radiological dispersion devices to cause large-scale radioactive contamination.
Collapse
|
5
|
Griffiths NM, Van der Meeren A, Grémy O. Comparison of Local and Systemic DTPA Treatment Efficacy According to Actinide Physicochemical Properties Following Lung or Wound Contamination in the Rat. Front Pharmacol 2021; 12:635792. [PMID: 33841153 PMCID: PMC8032982 DOI: 10.3389/fphar.2021.635792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 01/15/2023] Open
Abstract
Purpose: In cases of occupational accidents in nuclear facilities or subsequent to terrorist activities, the most likely routes of internal contamination with alpha-particle emitting actinides, such as plutonium (Pu) and americium (Am), are by inhalation or following wounding. Following contamination, actinide transfer to the circulation and subsequent deposition in skeleton and liver depends primarily on the physicochemical nature of the compound. The treatment remit following internal contamination is to decrease actinide retention and in consequence potential health risks, both at the contamination site and in systemic retention organs as well as to promote elimination. The only approved drug for decorporation of Pu and Am is the metal chelator diethylenetriaminepentaacetic acid (DTPA). However, a limited efficacy of DTPA has been reported following contamination with insoluble actinides, irrespective of the contamination route. The objectives of this work are to evaluate the efficacy of prompt local and/or systemic DTPA treatment regimens following lung or wound contamination by actinides with differing solubility. The conclusions are drawn from retrospective analysis of experimental studies carried out over 10 years. Materials and Methods: Rat lungs or wounds were contaminated either with poorly soluble Mixed OXide (U, Pu O2) or more soluble forms of Pu (nitrate or citrate). DTPA treatment was administered promptly after contamination, locally to lungs by insufflation of a powder or inhalation of aerosolized solution or by injection directly into the wound site. Intravenous injections of DTPA were given either once or repeated in combination with the local treatment. Doses ranged from 1 to 30 µmol/kg. Animals were euthanized from day 7-21 and alpha activity levels were measured in urine, lungs, wound, bone and liver for determination of decorporation efficacy. Results: Different experiments confirmed that whatever the route of contamination, most of the activity is retained at the entry site after insoluble MOX contamination as compared with contamination with more soluble forms which results in very low activities reaching the systemic compartment and subsequent retention in bone and liver. Several DTPA treatment regimens were evaluated that had no significant effect on either lung or wound levels compared with untreated animals. In contrast, in all cases systemic retention (skeleton and liver) was reduced and urinary excretion were enhanced irrespective of the contamination route or DTPA treatment regimen. Conclusion: The present study demonstrates that despite limitation of retention in systemic organs, different DTPA protocols were ineffective in removing insoluble actinides deposited in lungs or wound site. For moderately soluble actinides, local or intravenous DTPA treatment reduced activity levels both at contamination and at systemic sites.
Collapse
Affiliation(s)
- Nina M. Griffiths
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | | | | |
Collapse
|
6
|
Miccoli L, Ménétrier F, Laroche P, Grémy O. Chelation Treatment by Early Inhalation of Liquid Aerosol DTPA for Removing Plutonium after Rat Lung Contamination. Radiat Res 2019; 192:630-639. [PMID: 31545678 DOI: 10.1667/rr15451.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Occupational contamination is a potential health risk associated with plutonium inhalation. DTPA remains the chelating drug of choice to decorporate plutonium. In this study, plutonium was found to be more effectively removed from lungs by a single inhalation of nebulized DTPA solution at only 1.1 µmol.kg-1 than by a single intravenous (i.v.) dose of DTPA at 15 µmol.kg-1. When DTPA was inhaled promptly after contamination, it removed the transportable fraction of plutonium prior blood absorption, thereby preventing both liver and bone depositions. Conversely, DTPA injection was better than inhalation at reducing the extrapulmonary burden, probably due to the much greater circulating dose, favoring the mobilization of plutonium already translocated. Thus, prompt inhalation, concomitantly supplemented with i.v. injection, of DTPA induced an important decrease in extrapulmonary deposits. Repeated DTPA inhalations over several weeks were more efficient than a single inhalation in limiting both pulmonary and extrapulmonary plutonium retention, due at least in part to the chelation of the transportable fraction of lung plutonium. Furthermore, repeated DTPA injections remained better at reducing liver and bone plutonium retentions. Taken together, our results suggest that multiple DTPA inhalations may be considered an effective treatment after inhalation of plutonium, particularly given the ease of this needle-free delivery, for the two following conditions: 1. A treatment combining i.v. injection and inhalation should be given in an emergency scenario to efficiently chelate the activity already absorbed; 2. Inhalations should be administered daily to effectively trap the early transferable fraction.
Collapse
Affiliation(s)
- Laurent Miccoli
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | | | - Pierre Laroche
- Direction of Health, Security, Environment & Radioprotection, ORANO, Paris, France
| | - Olivier Grémy
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| |
Collapse
|
7
|
Grémy O. Medical countermeasures against radionuclide contamination: An overview. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191406001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Grémy O, Coudert S, Renault D, Miccoli L. Decorporation Approach after Rat Lung Contamination with Plutonium: Evaluation of the Key Parameters Influencing the Efficacy of a Protracted Chelation Treatment. Radiat Res 2017; 188:552-561. [PMID: 28945525 DOI: 10.1667/rr14782.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While the efficacy of a protracted zinc (Zn)- or calcium (Ca)-diethylenetriaminepentaacetic acid (DTPA) treatment in reducing transuranic body burden has already been demonstrated, questions about therapeutic variables remain. In response to this, we designed animal experiments primarily to assess both the effect of fractionation of a given dose and the effect of the frequency of dose fraction, with the same total dose. In our study, rats were contaminated intravenously with plutonium (Pu) then treated several days later with Ca-DTPA given at once or in various split-dose regimens cumulating to the same total dose and spread over several days. Similar efficacies were induced by the injection of the total dose or by splitting the dose in several smaller doses, independent of the number of doses and the dose level per injection. In a second study, rats were pulmonary contaminated, and three weeks later they received a Ca-DTPA dose 11-fold higher than the maximal daily recommended dose, administered either as a single bolus or as numerous multiple injections cumulating to the same dose, based on different injection frequency schedules. Independent of frequency schedule, the various split-dose regimens spread over weeks/months were as efficient as single delivery of the total dose in mobilizing lung plutonium, and had a therapeutic advantage for removal of retained hepatic and bone plutonium burdens. We concluded that cumulative dose level was a therapeutic variable of greater importance than the distribution of split doses for the success of a repeated treatment regimen on retained tissue plutonium. In addition, pulmonary administration of clodronate, which aims at killing alveolar macrophages and subsequently releasing their plutonium content, and which is associated with a continuous Ca-DTPA infusion regimen, suggested that the efficacy of injected Ca-DTPA in decorporating lung deposit is limited, due to its restricted penetration into alveolar macrophages and not because plutonium, as a physicochemical form, is unavailable for chelation.
Collapse
Affiliation(s)
- Olivier Grémy
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | - Sylvie Coudert
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | - Daniel Renault
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| | - Laurent Miccoli
- Laboratoire de RadioToxicologie, CEA, Université de Paris-Saclay, Bruyères le Châtel, France
| |
Collapse
|
9
|
Tazrart A, Bolzinger MA, Coudert S, Lamart S, Miller BW, Angulo JF, Briançon S, Griffiths NM. Skin absorption of actinides: influence of solvents or chelates on skin penetration ex vivo. Int J Radiat Biol 2017; 93:607-616. [DOI: 10.1080/09553002.2017.1293865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anissa Tazrart
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
- UMR CNRS 5007, Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Université de Lyon, Lyon, France
| | - Marie-Alexandrine Bolzinger
- UMR CNRS 5007, Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Université de Lyon, Lyon, France
| | - Sylvie Coudert
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
| | - Stephanie Lamart
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
| | - Brian W. Miller
- College of Optical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jaime F. Angulo
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
| | - Stéphanie Briançon
- UMR CNRS 5007, Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Université de Lyon, Lyon, France
| | - Nina M. Griffiths
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
| |
Collapse
|
10
|
Andersen O, Aaseth J. A review of pitfalls and progress in chelation treatment of metal poisonings. J Trace Elem Med Biol 2016; 38:74-80. [PMID: 27150911 DOI: 10.1016/j.jtemb.2016.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/31/2023]
Abstract
Most acute and chronic human metal poisonings are due to oral or inhalation exposure. Almost 80% of published animal experiments on chelation in metal poisoning used single or repeated intraperitoneal, intramuscular or intravenous administration of metal and chelator, impeding extrapolation to clinical settings. Intramuscular administration of dimercaptopropanol (BAL) has until now been used in acute arsenic, lead, and mercury poisonings, but repeated BAL administration increased the brain uptake of As, Pb and Hg in experimental animals. Also, diethyl dithiocarbamate (DDC) has been used as antidote in acute experimental animal parenteral Cd poisoning, and both DDC and tetraethylthiuram disulfide (TTD, disulfiram, Antabuse) have been used in nickel allergic patients. However, even one dose of DDC given immediately after oral Cd or Ni increased their brain uptake considerably. The calcium salt of ethylenediamminetetraacetic acid (CaEDTA) but not dimercaptosuccinic acid (DMSA) increased the brain uptake of Pb. In oral Cd or Hg poisoning, early oral administration of DMSA or dimercaptopropane sulfonate (DMPS) increased survival and reduced intestinal metal uptake. Oral administration of Prussian Blue or resins with fixed chelating groups that are not absorbed offer chelation approaches for decorporation after oral exposure to various metals. Diethylenetriaminepentaacetic acid (DTPA) nebulizers for pulmonary chelation after inhalation exposure need further development. Also, combined chelation with more than one compound may offer extensive advances. Solid knowledge on the chemistry of metal chelates together with relevant animal experiments should guide development of chelation procedures to alleviate and not aggravate the clinical status of poisoned patients.
Collapse
Affiliation(s)
- Ole Andersen
- Roskilde University, Roskilde, Denmark, Denmark.
| | - Jan Aaseth
- Innlandet Hospital Trust and Hedmark University College, Elverum, Norway, Norway
| |
Collapse
|
11
|
Van der Meeren A, Moureau A, Laurent D, Laroche P, Angulo JF. In vitro assessment of plutonium uptake and release using the human macrophage-like THP-1 cells. Toxicol In Vitro 2016; 37:25-33. [PMID: 27458071 DOI: 10.1016/j.tiv.2016.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/26/2022]
Abstract
Plutonium (Pu) intake by inhalation is one of the major potential consequences following an accident in the nuclear industry or after improvised nuclear device explosion. Macrophages are essential players in retention and clearance of inhaled compounds. However, the extent to which these phagocytic cells are involved in these processes highly depends on the solubility properties of the Pu deposited in the lungs. Our objectives were to develop an in vitro model representative of the human pulmonary macrophage capacity to internalize and release Pu compounds in presence or not of the chelating drug diethylenetriaminepentaacetate (DTPA). The monocyte cell line THP-1 was used after differentiation into macrophage-like cells. We assessed the cellular uptake of various forms of Pu which differ in their solubility, as well as the release of the internalized Pu. Results obtained with differentiated THP-1 cells are in good agreement with data from rat alveolar macrophages and fit well with in vivo data. In both cell types, Pu uptake and release depend upon Pu solubility and in all cases DTPA increases Pu release. The proposed model may provide a good complement to in vivo animal experiments and could be used in a first assessment to predict the fraction of Pu that could be potentially trapped, as well as the fraction available to chelating drugs.
Collapse
Affiliation(s)
- Anne Van der Meeren
- Laboratory of Radio Toxicology, CEA/DRF/iRCM, Bruyères le Châtel, 91297 Arpajon, France.
| | - Agnès Moureau
- Laboratory of Radio Toxicology, CEA/DRF/iRCM, Bruyères le Châtel, 91297 Arpajon, France
| | - David Laurent
- Laboratory of Radio Toxicology, CEA/DRF/iRCM, Bruyères le Châtel, 91297 Arpajon, France
| | - Pierre Laroche
- Direction Health Security Environment & Radioprotection, AREVA, Paris, France
| | - Jaime F Angulo
- Laboratory of Radio Toxicology, CEA/DRF/iRCM, Bruyères le Châtel, 91297 Arpajon, France
| |
Collapse
|
12
|
Fattal E, Tsapis N, Phan G. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents. Adv Drug Deliv Rev 2015; 90:40-54. [PMID: 26144994 DOI: 10.1016/j.addr.2015.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
The possibility of accidents in the nuclear industry or of nuclear terrorist attacks makes the development of new decontamination strategies crucial. Among radionuclides, actinides such as uranium and plutonium and their different isotopes are considered as the most dangerous contaminants, plutonium displaying mostly a radiological toxicity whereas uranium exhibits mainly a chemical toxicity. Contamination occurs through ingestion, skin or lung exposure with subsequent absorption and distribution of the radionuclides to different tissues where they induce damaging effects. Different chelating agents have been synthesized but their efficacy is limited by their low tissue specificity and high toxicity. For these reasons, several groups have developed smart delivery systems to increase the local concentration of the chelating agent or to improve its biodistribution. The aim of this review is to highlight these strategies.
Collapse
|
13
|
Abstract
Estimating radionuclide intakes from bioassays following chelation treatment presents a challenge to the dosimetrist due to the observed excretion enhancement of the particular radionuclide of concern where no standard biokinetic model exists. This document provides a Pu-DTPA biokinetic model that may be used for making such determination for plutonium intakes. The Pu-DTPA biokinetic model is intended to supplement the standard recommended biokinetic models. The model was used to evaluate several chelation strategies that resulted in providing recommendations for effective treatment. These recommendations supported early treatment for soluble particle inhalations and an initial 3-day series of DTPA treatments for wounds. Several late chelation strategies were also compared where reduced treatment frequencies proved to be as effective as multiple treatments. The Pu-DTPA biokinetic model can be used to assist in estimating initial intakes of transuranic radionuclides and for studying the effects of different treatment strategies.
Collapse
Affiliation(s)
- Kevin Konzen
- *CH2M-WG Idaho, LLC, Radiological Control, 1580 Sawtelle Street, Idaho Falls, ID 83402; †Department of Nuclear Engineering and Health Physics, Idaho State University, 921 South 8th Avenue, Stop 8060, Pocatello, ID 83209-8060
| | | |
Collapse
|