1
|
DiCarlo AL. Scientific research and product development in the United States to address injuries from a radiation public health emergency. JOURNAL OF RADIATION RESEARCH 2021; 62:752-763. [PMID: 34308479 PMCID: PMC8438480 DOI: 10.1093/jrr/rrab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The USA has experienced one large-scale nuclear incident in its history. Lessons learned during the Three-Mile Island nuclear accident provided government planners with insight into property damage resulting from a low-level release of radiation, and an awareness concerning how to prepare for future occurrences. However, if there is an incident resulting from detonation of an improvised nuclear device or state-sponsored device/weapon, resulting casualties and the need for medical treatment could overwhelm the nation's public health system. After the Cold War ended, government investments in radiation preparedness declined; however, the attacks on 9/11 led to re-establishment of research programs to plan for the possibility of a nuclear incident. Funding began in earnest in 2004, to address unmet research needs for radiation biomarkers, devices and products to triage and treat potentially large numbers of injured civilians. There are many biodosimetry approaches and medical countermeasures (MCMs) under study and in advanced development, including those to address radiation-induced injuries to organ systems including bone marrow, the gastrointestinal (GI) tract, lungs, skin, vasculature and kidneys. Biomarkers of interest in determining level of radiation exposure and susceptibility of injury include cytogenetic changes, 'omics' technologies and other approaches. Four drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of acute radiation syndrome (ARS), with other licensures being sought; however, there are still no cleared devices to identify radiation-exposed individuals in need of treatment. Although many breakthroughs have been made in the efforts to expand availability of medical products, there is still work to be done.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Corresponding author. Radiation and Nuclear Countermeasures Program, Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Room 7B13, Rockville, MD, USA. Office Phone: 1-240-627-3492; Office Fax: 1-240-627-3113;
| |
Collapse
|
2
|
The Call. Pract Radiat Oncol 2017; 8:1-3. [PMID: 28676227 DOI: 10.1016/j.prro.2017.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022]
|
3
|
Liu BF, Quinn SC, Egnoto M, Freimuth V, Boonchaisri N. Public Understanding of Medical Countermeasures. Health Secur 2017; 15:194-206. [PMID: 28388223 DOI: 10.1089/hs.2016.0074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Medical countermeasures, including new drugs and vaccines, are necessary to protect the public's health from novel diseases and terrorist threats. Experience with the 2001 anthrax attack and the 2009 H1N1 pandemic suggest that there is limited willingness to accept such drugs and that minority groups may respond differently from others. We conducted 148 intercept interviews in the metropolitan Washington, DC, area, examining 2 hypothetical scenarios: a new respiratory virus and public exposure to high levels of radiation. Findings provide insights into key factors that affect whether diverse members of the public comply with recommended protective actions like taking emergency authorized vaccines. These insights can help improve how public health practitioners communicate during uncertain times.
Collapse
|
4
|
Abstract
The radiation stress response can have broad impact. In this Failla Award presentation it is discussed in three components using terms relevant to the current political season as to how the radiation stress response can be applied to the benefit for cancer care and as service to society. Of the people refers to the impact of radiation on cells, tissues and patients. The paradigm our laboratory uses is radiation as a drug, called "focused biology", and physics as "nano-IMRT" because at the nanometer level physics and biology merge. By the people refers to how the general population often reacts to the word "radiation" and how the Radiation Research Society can better enable society to deal with the current realities of radiation in our lives. For the people refers to the potential for radiation oncology and radiation sciences to improve the lives of millions of people globally who are now beyond benefits of cancer treatment and research.
Collapse
Affiliation(s)
- C. Norman Coleman
- Associate Director, Radiation Research Program, Division of Cancer Treatment and Diagnosis; Senior Investigator, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and Senior Medical Advisor, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington DC
| |
Collapse
|
5
|
Urushihara Y, Kawasumi K, Endo S, Tanaka K, Hirakawa Y, Hayashi G, Sekine T, Kino Y, Kuwahara Y, Suzuki M, Fukumoto M, Yamashiro H, Abe Y, Fukuda T, Shinoda H, Isogai E, Arai T, Fukumoto M. Analysis of Plasma Protein Concentrations and Enzyme Activities in Cattle within the Ex-Evacuation Zone of the Fukushima Daiichi Nuclear Plant Accident. PLoS One 2016; 11:e0155069. [PMID: 27159386 PMCID: PMC4861266 DOI: 10.1371/journal.pone.0155069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/24/2016] [Indexed: 11/18/2022] Open
Abstract
The effect of the Fukushima Daiichi Nuclear Power Plant (FNPP) accident on humans and the environment is a global concern. We performed biochemical analyses of plasma from 49 Japanese Black cattle that were euthanized in the ex-evacuation zone set within a 20-km radius of FNPP. Among radionuclides attributable to the FNPP accident, germanium gamma-ray spectrometry detected photopeaks only from 134Cs and 137Cs (radiocesium) commonly in the organs and in soil examined. Radioactivity concentration of radiocesium was the highest in skeletal muscles. Assuming that the animal body was composed of only skeletal muscles, the median of internal dose rate from radiocesium was 12.5 μGy/day (ranging from 1.6 to 33.9 μGy/day). The median of external dose rate calculating from the place the cattle were caught was 18.8 μGy/day (6.0-133.4 μGy/day). The median of internal and external (total) dose rate of the individual cattle was 26.9 μGy/day (9.1-155.1 μGy/day). Plasma levels of malondialdehyde and superoxide dismutase activity were positively and glutathione peroxidase activity was negatively correlated with internal dose rate. Plasma alanine transaminase activity and percent activity of lactate dehydrogenase (LDH)-2, LDH-3 and LDH-4 were positively and LDH-1 was negatively correlated with both internal and total dose rate. These suggest that chronic exposure to low-dose rate of ionizing radiation induces slight stress resulting in modified plasma protein and enzyme levels.
Collapse
Affiliation(s)
- Yusuke Urushihara
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Chiba, Japan
| | - Koh Kawasumi
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Satoru Endo
- Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenichi Tanaka
- Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yasuko Hirakawa
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Gohei Hayashi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Tsutomu Sekine
- Institute for Excellence in Higher Education, Tohoku University, Sendai, Miyagi, Japan
| | - Yasushi Kino
- Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshikazu Kuwahara
- Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Masatoshi Suzuki
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Motoi Fukumoto
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | | | - Yasuyuki Abe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tomokazu Fukuda
- Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - Emiko Isogai
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Toshiro Arai
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Manabu Fukumoto
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
6
|
Coleman CN, Formenti SC, Williams TR, Petereit DG, Soo KC, Wong J, Chao N, Shulman LN, Grover S, Magrath I, Hahn S, Liu FF, DeWeese T, Khleif SN, Steinberg M, Roth L, Pistenmaa DA, Love RR, Mohiuddin M, Vikram B. The international cancer expert corps: a unique approach for sustainable cancer care in low and lower-middle income countries. Front Oncol 2014; 4:333. [PMID: 25478326 PMCID: PMC4237042 DOI: 10.3389/fonc.2014.00333] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/01/2014] [Indexed: 11/13/2022] Open
Abstract
The growing burden of non-communicable diseases including cancer in low- and lower-middle income countries (LMICs) and in geographic-access limited settings within resource-rich countries requires effective and sustainable solutions. The International Cancer Expert Corps (ICEC) is pioneering a novel global mentorship-partnership model to address workforce capability and capacity within cancer disparities regions built on the requirement for local investment in personnel and infrastructure. Radiation oncology will be a key component given its efficacy for cure even for the advanced stages of disease often encountered and for palliation. The goal for an ICEC Center within these health disparities settings is to develop and retain a high-quality sustainable workforce who can provide the best possible cancer care, conduct research, and become a regional center of excellence. The ICEC Center can also serve as a focal point for economic, social, and healthcare system improvement. ICEC is establishing teams of Experts with expertise to mentor in the broad range of subjects required to establish and sustain cancer care programs. The Hubs are cancer centers or other groups and professional societies in resource-rich settings that will comprise the global infrastructure coordinated by ICEC Central. A transformational tenet of ICEC is that altruistic, human-service activity should be an integral part of a healthcare career. To achieve a critical mass of mentors ICEC is working with three groups: academia, private practice, and senior mentors/retirees. While in-kind support will be important, ICEC seeks support for the career time dedicated to this activity through grants, government support, industry, and philanthropy. Providing care for people with cancer in LMICs has been a recalcitrant problem. The alarming increase in the global burden of cancer in LMICs underscores the urgency and makes this an opportune time fornovel and sustainable solutions to transform cancer care globally.
Collapse
Affiliation(s)
| | | | - Tim R Williams
- Lynn Cancer Institute at Boca Raton Regional Hospital , Boca Raton, FL , USA
| | | | - Khee C Soo
- National Cancer Center , Singapore , Singapore
| | - John Wong
- National University Cancer Institute, National University of Singapore , Singapore , Singapore
| | - Nelson Chao
- Division of Hematologic Malignancies and Cellular Therapy, BMT and Global Cancer, Duke Cancer Institute, Duke University , Durham, NC , USA
| | | | - Surbhi Grover
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania , Philadelphia, PA , USA
| | - Ian Magrath
- International Network for Cancer Treatment and Research , Brussels , Belgium
| | - Stephen Hahn
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania , Philadelphia, PA , USA
| | - Fei-Fei Liu
- Department of Radiation Oncology, Radiation Medicine Program, Princess Margaret Cancer Centre, University of Toronto , Toronto, ON , Canada
| | - Theodore DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University , Baltimore, MD , USA
| | - Samir N Khleif
- Cancer Center, Georgia Regents University , Augusta, GA , USA
| | - Michael Steinberg
- Department of Radiation Oncology, University of California Los Angeles , Los Angeles, CA , USA
| | - Lawrence Roth
- International Cancer Expert Corps , Chevy Chase, MD , USA
| | | | - Richard R Love
- International Cancer Expert Corps , Chevy Chase, MD , USA ; International Breast Cancer Research Foundation , Madison, WI , USA
| | | | - Bhadrasain Vikram
- Radiation Research Program, National Cancer Institute , Bethesda, MD , USA
| |
Collapse
|
7
|
Coleman CN. Bringing cancer care to the underserved globally: a challenging problem for which radiation oncology can pioneer novel solutions. Int J Radiat Oncol Biol Phys 2014; 89:443-5. [PMID: 24929152 DOI: 10.1016/j.ijrobp.2014.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/28/2022]
Affiliation(s)
- C Norman Coleman
- The International Cancer Expert Corps, Chevy Chase, Maryland and Wilmington, Delaware.
| | | |
Collapse
|
8
|
Morgan WF, Bair WJ. Issues in Low Dose Radiation Biology: The Controversy Continues. A Perspective. Radiat Res 2013; 179:501-10. [DOI: 10.1667/rr3306.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|