1
|
Wiggs MP, Lee Y, Shimkus KL, O'Reilly CI, Lima F, Macias BR, Shirazi-Fard Y, Greene ES, Hord JM, Braby LA, Carroll CC, Lawler JM, Bloomfield SA, Fluckey JD. Combined effects of heavy ion exposure and simulated Lunar gravity on skeletal muscle. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:39-49. [PMID: 37087178 DOI: 10.1016/j.lssr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 02/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The limitations to prolonged spaceflight include unloading-induced atrophy of the musculoskeletal system which may be enhanced by exposure to the space radiation environment. Previous results have concluded that partial gravity, comparable to the Lunar surface, may have detrimental effects on skeletal muscle. However, little is known if these outcomes are exacerbated by exposure to low-dose rate, high-energy radiation common to the space environment. Therefore, the present study sought to determine the impact of highly charge, high-energy (HZE) radiation on skeletal muscle when combined with partial weightbearing to simulate Lunar gravity. We hypothesized that partial unloading would compromise skeletal muscle and these effects would be exacerbated by radiation exposure. METHODS For month old female BALB/cByJ mice were -assigned to one of 2 groups; either full weight bearing (Cage Controls, CC) or partial weight bearing equal to 1/6th bodyweight (G/6). Both groups were then divided to receive either a single whole body absorbed dose of 0.5 Gy of 300 MeV 28Si ions (RAD) or a sham treatment (SHAM). Radiation exposure experiments were performed at the NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory on Day 0, followed by 21 d of CC or G/6 loading. Muscles of the hind limb were used to measure protein synthesis and other histological measures. RESULTS Twenty-one days of Lunar gravity (G/6) resulted in lower soleus, plantaris, and gastrocnemius muscle mass. Radiation exposure did not further impact muscle mass. 28Si exposure in normal ambulatory animals (RAD+CC) did not impact gastrocnemius muscle mass when compared to SHAM+CC (p>0.05), but did affect the soleus, where mass was higher following radiation compared to SHAM (p<0.05). Mixed gastrocnemius muscle protein synthesis was lower in both unloading groups. Fiber type composition transitioned towards a faster isoform with partial unloading and was not further impacted by radiation. The combined effects of partial loading and radiation partially mitigated fiber cross-sectional area when compared to partial loading alone. Radiation and G/6 reduced the total number of myonuclei per fiber while leading to elevated BrdU content of skeletal muscle. Similarly, unloading and radiation resulted in higher collagen content of muscle when compared to controls, but the effects of combined exposure were not additive. CONCLUSIONS The results of this study confirm that partial weightbearing causes muscle atrophy, in part due to reductions of muscle protein synthesis in the soleus and gastrocnemius as well as reduced peripheral nuclei per fiber. Additionally, we present novel data illustrating 28Si exposure reduced nuclei in muscle fibers despite higher satellite cell fusion, but did not exacerbate muscle atrophy, CSA changes, or collagen content. In conclusion, both partial loading and HZE radiation can negatively impact muscle morphology.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, United States.
| | - Yang Lee
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Kevin L Shimkus
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Colleen I O'Reilly
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Florence Lima
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Brandon R Macias
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; NASA Johnson Space Center, Houston, Texas, United States
| | - Yasaman Shirazi-Fard
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; NASA Ames Research Center, Moffett Field, CA, United States
| | - Elizabeth S Greene
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Jeffrey M Hord
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Leslie A Braby
- Department of Nuclear Engineering, Texas A&M University, College Station, TX, United States
| | - Chad C Carroll
- Department of Physiology, Purdue University, West Lafayette, IN, United States
| | - John M Lawler
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - James D Fluckey
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Garikipati VNS, Arakelyan A, Blakely EA, Chang PY, Truongcao MM, Cimini M, Malaredy V, Bajpai A, Addya S, Bisserier M, Brojakowska A, Eskandari A, Khlgatian MK, Hadri L, Fish KM, Kishore R, Goukassian DA. Long-Term Effects of Very Low Dose Particle Radiation on Gene Expression in the Heart: Degenerative Disease Risks. Cells 2021; 10:387. [PMID: 33668521 PMCID: PMC7917872 DOI: 10.3390/cells10020387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Compared to low doses of gamma irradiation (γ-IR), high-charge-and-energy (HZE) particle IR may have different biological response thresholds in cardiac tissue at lower doses, and these effects may be IR type and dose dependent. Three- to four-month-old female CB6F1/Hsd mice were exposed once to one of four different doses of the following types of radiation: γ-IR 137Cs (40-160 cGy, 0.662 MeV), 14Si-IR (4-32 cGy, 260 MeV/n), or 22Ti-IR (3-26 cGy, 1 GeV/n). At 16 months post-exposure, animals were sacrificed and hearts were harvested and archived as part of the NASA Space Radiation Tissue Sharing Forum. These heart tissue samples were used in our study for RNA isolation and microarray hybridization. Functional annotation of twofold up/down differentially expressed genes (DEGs) and bioinformatics analyses revealed the following: (i) there were no clear lower IR thresholds for HZE- or γ-IR; (ii) there were 12 common DEGs across all 3 IR types; (iii) these 12 overlapping genes predicted various degrees of cardiovascular, pulmonary, and metabolic diseases, cancer, and aging; and (iv) these 12 genes revealed an exclusive non-linear DEG pattern in 14Si- and 22Ti-IR-exposed hearts, whereas two-thirds of γ-IR-exposed hearts revealed a linear pattern of DEGs. Thus, our study may provide experimental evidence of excess relative risk (ERR) quantification of low/very low doses of full-body space-type IR-associated degenerative disease development.
Collapse
Affiliation(s)
- Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M Davis Heart and Lung Research Institute, Wexner Medical School, The Ohio State University, Columbus, OH 43210, USA;
| | - Arsen Arakelyan
- Bioinformatics Group, The Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia;
- PathVerse, Yerevan 0014, Armenia
| | | | | | - May M. Truongcao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Vandana Malaredy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Anamika Bajpai
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - Sankar Addya
- Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Agnieszka Brojakowska
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Abrisham Eskandari
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Mary K. Khlgatian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Kenneth M. Fish
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.M.T.); (M.C.); (V.M.); (A.B.); (R.K.)
| | - David. A. Goukassian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.B.); (A.B.); (A.E.); (M.K.K.); (L.H.); (K.M.F.)
| |
Collapse
|
4
|
Mikhaeil JS, Sacco SM, Saint C, Gittings W, Bunda J, Giles CR, Fajardo VA, Vandenboom R, Ward WE, LeBlanc PJ. Influence of longitudinal radiation exposure from microcomputed tomography scanning on skeletal muscle function and metabolic activity in female CD-1 mice. Physiol Rep 2017; 5:5/13/e13338. [PMID: 28676556 PMCID: PMC5506525 DOI: 10.14814/phy2.13338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 01/15/2023] Open
Abstract
Microcomputed tomography (μCT) is an imaging technology to assess bone microarchitecture, a determinant of bone strength. When measured in vivo, μCT exposes the skeletal site of interest to a dose of radiation, in addition to nearby skeletal muscles as well. Therefore, the aim of this study was to determine the effects of repeated radiation exposure from in vivo μCT on muscle health – specifically, muscle morphometrics, contractile function, and enzyme activity. This study exposed the right hind limb of female mice to either a low (26 cGy) or moderate (46 cGy) dose, at 2, 4, and 6 months of age, while the left hind limb of the same animal was exposed to a single dose at 6 months to serve as a nonirradiated control. Muscle weight, cross‐sectional area, isometric contractile function, and representative maximal enzyme activities of amino acid, fatty acid, glucose, and oxidative metabolism in extensor digitorum longus (EDL) and soleus were assessed. Low‐dose radiation had no effect. In contrast, moderate‐dose radiation resulted in a 5% increase in time‐to‐peak tension and 16% increase in half‐relaxation time of isometric twitches in EDL, although these changes were not seen when normalized to force. Moderate‐dose radiation also resulted in an ~33% decrease in citrate synthase activity in soleus but not EDL, with no changes to the other enzymes measured. Thus, three low doses of radiation over 6 months had no effect on contractile function or metabolic enzyme activity in soleus and EDL of female mice. In contrast, three moderate doses of radiation over 6 months induced some effects on metabolic enzyme activity in soleus but not EDL. Future studies that wish to investigate muscle tissue that is adjacent to scanned bone should take radiation exposure dose into consideration.
Collapse
Affiliation(s)
- John S Mikhaeil
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Sandra M Sacco
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Caitlin Saint
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - William Gittings
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Jordan Bunda
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Cameron R Giles
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Val A Fajardo
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Rene Vandenboom
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Wendy E Ward
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada.,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada.,Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| | - Paul J LeBlanc
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontaria, Canada .,Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontaria, Canada
| |
Collapse
|
5
|
Gao Y, Xu D, Zhao L, Sun Y. The DNA damage response of C. elegans affected by gravity sensing and radiosensitivity during the Shenzhou-8 spaceflight. Mutat Res 2017; 795:15-26. [PMID: 28088539 DOI: 10.1016/j.mrfmmm.2017.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/06/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Space radiation and microgravity are recognized as primary and inevitable risk factors for humans traveling in space, but the reports regarding their synergistic effects remain inconclusive and vary across studies due to differences in the environmental conditions and intrinsic biological sensitivity. Thus, we studied the synergistic effects on transcriptional changes in the global genome and DNA damage response (DDR) by using dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity when exposure to spaceflight condition (SF) and space radiation (SR). The dys-1 mutation induced similar transcriptional changes under both conditions, including the transcriptional distribution and function of altered genes. The majority of alterations were related to metabolic shift under both conditions, including transmembrane transport, lipid metabolic processes and proteolysis. Under SF and SR conditions, 12/14 and 10/13 altered pathways, respectively, were both grouped in the metabolism category. Out of the 778 genes involved in DDR, except eya-1 and ceh-34, 28 altered genes in dys-1 mutant showed no predicted protein interactions, or anti-correlated miRNAs during spaceflight. The ced-1 mutation induced similar changes under SF and SR; however, these effects were stronger than those of the dys-1 mutant. The additional genes identified were related to phosphorous/phosphate metabolic processes and growth rather than, metabolism, especially for environmental information processing under SR. Although the DDR profiles were significantly changed under both conditions, the ced-1 mutation favored DNA repair under SF and apoptosis under SR. Notably, 37 miRNAs were predicted to be involved in the DDR. Our study indicates that, the dys-1 mutation reduced the transcriptional response to SF, and the ced-1 mutation increased the response to SR, when compared with the wild type C. elegans. Although some effects were due to radiosensitivity, microgravity, depending on the dystrophin, exerts predominant effects on transcription in C. elegans during short-duration spaceflight.
Collapse
Affiliation(s)
- Ying Gao
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, China; Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China.
| |
Collapse
|
6
|
Fix DK, Hardee JP, Bateman TA, Carson JA. Effect of irradiation on Akt signaling in atrophying skeletal muscle. J Appl Physiol (1985) 2016; 121:917-924. [PMID: 27562841 DOI: 10.1152/japplphysiol.00218.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Muscle irradiation (IRR) exposure can accompany unloading during spaceflight or cancer treatment, and this has been shown to be sufficient by itself to induce skeletal muscle signaling associated with a remodeling response. Although protein kinase B/Akt has an established role in the regulation of muscle growth and metabolism, there is a limited understanding of how Akt signaling in unloaded skeletal muscle is affected by IRR. Therefore, we examined the combined effects of acute IRR and short-term unloading on muscle Akt signaling. Female C57BL/6 mice were subjected to load bearing or hindlimb suspension (HS) for 5 days (n = 6/group). A single, unilateral hindlimb IRR dose (0.5 Gy X-ray) was administered on day 3 Gastrocnemius muscle protein expression was examined. HS resulted in decreased AktT308 phosphorylation, whereas HS+IRR resulted in increased AktT308 phosphorylation above baseline. HS resulted in reduced AktS473 phosphorylation, which was rescued by HS+IRR. Interestingly, IRR alone resulted in increased phosphorylation of AktS473, but not that of AktT308 HS resulted in decreased mTORC1 signaling, and this suppression was not altered by IRR. Both IRR and HS resulted in increased MuRF-1 expression, whereas atrogin-1 expression was not affected by either condition. These results demonstrate that either IRR alone or when combined with HS can differentially affect Akt phosphorylation, but IRR did not disrupt suppressed mTORC1 signaling by HS. Collectively, these findings highlight that a single IRR dose is sufficient to disrupt the regulation of Akt signaling in atrophying skeletal muscle.
Collapse
Affiliation(s)
- Dennis K Fix
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| | - Ted A Bateman
- Departments of Biomedical Engineering and Radiation Oncology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina; and
| |
Collapse
|
7
|
Gao Y, Xu D, Zhao L, Zhang M, Sun Y. Effects of microgravity on DNA damage response in Caenorhabditis elegans during Shenzhou-8 spaceflight. Int J Radiat Biol 2015; 91:531-9. [PMID: 25965668 DOI: 10.3109/09553002.2015.1043754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Space radiations and microgravity both could cause DNA damage in cells, but the effects of microgravity on DNA damage response to space radiations are still controversial. MATERIALS AND METHODS A mRNA microarray and microRNA micro- array in dauer larvae of Caenorhabditis elegans (C. elegans) that endured spaceflight environment and space radiations environment during 16.5-day Shenzhou-8 space mission was performed. RESULTS Twice as many transcripts significantly altered in the spaceflight environment than space radiations alone. The majority of alterations were related to protein amino acid dephosphorylation and histidine metabolic and catabolic processes. From about 900 genes related to DNA damage response, 38 differentially expressed genes were extracted; most of them differentially expressed under spaceflight environment but not space radiations, although the identical directions of alteration were observed in both cases. cel-miR-81, cel- miR-82, cel-miR-124 and cel-miR-795 were predicted to regulate DNA damage response through four different anti-correlated genes. CONCLUSIONS Evidence was provided that, in the presence of space radiations, microgravity probably enhanced the DNA damage response in C. elegans by integrating the transcriptome and microRNome.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University , Dalian, Liaoning , P. R. China
| | | | | | | | | |
Collapse
|