1
|
Huff JL, Poignant F, Rahmanian S, Khan N, Blakely EA, Britten RA, Chang P, Fornace AJ, Hada M, Kronenberg A, Norman RB, Patel ZS, Shay JW, Weil MM, Simonsen LC, Slaba TC. Galactic cosmic ray simulation at the NASA space radiation laboratory - Progress, challenges and recommendations on mixed-field effects. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:90-104. [PMID: 36682835 DOI: 10.1016/j.lssr.2022.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.
Collapse
Affiliation(s)
- Janice L Huff
- NASA Langley Research Center, Hampton, VA, 23681, United States of America.
| | - Floriane Poignant
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Shirin Rahmanian
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Nafisah Khan
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Eleanor A Blakely
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Richard A Britten
- Department of Radiation Oncology, Department of Microbiology and Molecular Cell Biology, Leroy T Canoles Jr. Cancer Center, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, United States of America
| | - Polly Chang
- SRI International, Menlo Park, CA, 94025, United States of America
| | - Albert J Fornace
- Georgetown University, Washington, DC, 20057, United States of America
| | - Megumi Hada
- Prairie View A&M University, Prairie View, TX, 77446, United States of America
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Ryan B Norman
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| | - Zarana S Patel
- KBR Inc., Houston, TX, 77058, United States of America; NASA Johnson Space Center, Houston, TX, 77058, United States of America
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael M Weil
- Colorado State University, Fort Collins, CO, 80523, United States of America
| | - Lisa C Simonsen
- NASA Headquarters, Washington, DC, 20546, United States of America
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| |
Collapse
|
2
|
Guo Z, Zhou G, Hu W. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 2022; 32:100828. [PMID: 35908380 PMCID: PMC9340504 DOI: 10.1016/j.neo.2022.100828] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The carcinogenic risk from space radiation has always been a health risk issue of great concern during space exploration. In recent years, a large number of cellular and animal experiments have demonstrated that space radiation, composed of high-energy protons and heavy ions, has shown obvious carcinogenicity. However, different from radiation on Earth, space radiation has the characteristics of high energy and low dose rate. It is rich in high-atom-number and high-energy particles and, as it is combined with other space environmental factors such as microgravity and a weak magnetic field, the study of its carcinogenic effects and mechanisms of action is difficult, which leads to great uncertainty in its carcinogenic risk assessment. Here, we review the latest progress in understanding the effects and mechanisms of action related to cell transformation and carcinogenesis induced by space radiation in recent years and summarize the prediction models of cancer risk caused by space radiation and the methods to reduce the uncertainty of prediction to provide reference for the research and risk assessment of space radiation.
Collapse
Affiliation(s)
- Zi Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, PR China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, PR China.
| |
Collapse
|
3
|
Bennett PV, Johnson AM, Ackerman SE, Chaudhary P, Keszenman DJ, Wilson PF. Dose-Rate Effects of Protons and Light Ions for DNA Damage Induction, Survival and Transformation in Apparently Normal Primary Human Fibroblasts. Radiat Res 2021; 197:298-313. [PMID: 34910217 DOI: 10.1667/rade-21-00138.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/09/2021] [Indexed: 11/03/2022]
Abstract
We report on effects of low-dose exposures of accelerated protons delivered at high-dose rate (HDR) or a simulated solar-particle event (SPE) like low-dose rate (LDR) on immediate DNA damage induction and processing, survival and in vitro transformation of low passage NFF28 apparently normal primary human fibroblasts. Cultures were exposed to 50, 100 and 1,000 MeV monoenergetic protons in the Bragg entrance/plateau region and cesium-137 γ rays at 20 Gy/h (HDR) or 1 Gy/h (LDR). DNA double-strand breaks (DSB) and clustered DNA damages (containing oxypurines and abasic sites) were measured using transverse alternating gel electrophoresis (TAFE) and immunocytochemical detection/scoring of colocalized γ-H2AX pS139/53BP1 foci, with their induction being linear energy transfer (LET) dependent and dose-rate sparing observed for the different damage classes. Relative biological effectiveness (RBE) values for cell survival after proton irradiation at both dose-rates ranged from 0.61-0.73. Transformation RBE values were dose-rate dependent, ranging from ∼1.8-3.1 and ∼0.6-1.0 at low doses (≤30 cGy) for HDR and LDR irradiations, respectively. However peak transformation frequencies were significantly higher (1.3-7.3-fold) for higher doses of 0.5-1 Gy delivered at SPE-like LDR. Cell survival and transformation frequencies measured after low-dose 500 MeV/n He-4, 290 MeV/n C-12 and 600 MeV/n Si-28 ion irradiations also showed an inverse dose-rate effect for transformation at SPE-like LDR. This work demonstrates the existence of inverse dose-rate effects for proton and light-ion-induced postirradiation cell survival and in vitro transformation for space mission-relevant doses and dose rates.
Collapse
Affiliation(s)
- Paula V Bennett
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Alicia M Johnson
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Sarah E Ackerman
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Pankaj Chaudhary
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | | | - Paul F Wilson
- Biology Department, Brookhaven National Laboratory, Upton, New York
| |
Collapse
|
4
|
Johnson AM, Bennett PV, Sanidad KZ, Hoang A, Jardine JH, Keszenman DJ, Wilson PF. Evaluation of Histone Deacetylase Inhibitors as Radiosensitizers for Proton and Light Ion Radiotherapy. Front Oncol 2021; 11:735940. [PMID: 34513712 PMCID: PMC8426582 DOI: 10.3389/fonc.2021.735940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
Significant opportunities remain for pharmacologically enhancing the clinical effectiveness of proton and carbon ion-based radiotherapies to achieve both tumor cell radiosensitization and normal tissue radioprotection. We investigated whether pretreatment with the hydroxamate-based histone deacetylase inhibitors (HDACi) SAHA (vorinostat), M344, and PTACH impacts radiation-induced DNA double-strand break (DSB) induction and repair, cell killing, and transformation (acquisition of anchorage-independent growth in soft agar) in human normal and tumor cell lines following gamma ray and light ion irradiation. Treatment of normal NFF28 primary fibroblasts and U2OS osteosarcoma, A549 lung carcinoma, and U87MG glioma cells with 5–10 µM HDACi concentrations 18 h prior to cesium-137 gamma irradiation resulted in radiosensitization measured by clonogenic survival assays and increased levels of colocalized gamma-H2AX/53BP1 foci induction. We similarly tested these HDACi following irradiation with 200 MeV protons, 290 MeV/n carbon ions, and 350 MeV/n oxygen ions delivered in the Bragg plateau region. Unlike uniform gamma ray radiosensitization, effects of HDACi pretreatment were unexpectedly cell type and ion species-dependent with C-12 and O-16 ion irradiations showing enhanced G0/G1-phase fibroblast survival (radioprotection) and in some cases reduced or absent tumor cell radiosensitization. DSB-associated foci levels were similar for proton-irradiated DMSO control and SAHA-treated fibroblast cultures, while lower levels of induced foci were observed in SAHA-pretreated C-12 ion-irradiated fibroblasts. Fibroblast transformation frequencies measured for all radiation types were generally LET-dependent and lowest following proton irradiation; however, both gamma and proton exposures showed hyperlinear transformation induction at low doses (≤25 cGy). HDACi pretreatments led to overall lower transformation frequencies at low doses for all radiation types except O-16 ions but generally led to higher transformation frequencies at higher doses (>50 cGy). The results of these in vitro studies cast doubt on the clinical efficacy of using HDACi as radiosensitizers for light ion-based hadron radiotherapy given the mixed results on their radiosensitization effectiveness and related possibility of increased second cancer induction.
Collapse
Affiliation(s)
- Alicia M Johnson
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Paula V Bennett
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Katherine Z Sanidad
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Anthony Hoang
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - James H Jardine
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Deborah J Keszenman
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States.,Laboratorio de Radiobiología Médica y Ambiental, Grupo de Biofisicoquímica, Centro Universitario Regional Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
| | - Paul F Wilson
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States.,Department of Radiation Oncology, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
5
|
Luitel K, Kim SB, Barron S, Richardson JA, Shay JW. Lung cancer progression using fast switching multiple ion beam radiation and countermeasure prevention. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:108-115. [PMID: 31987474 PMCID: PMC6991460 DOI: 10.1016/j.lssr.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 05/13/2023]
Abstract
Most of the research in understanding space radiation-induced cancer progression and risk assessment has been performed using mono-energetic single-ion beams. However, the space radiation environment consists of a wide variety of ion species with a various range of energies. Using the fast beam switching technology developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), ion species can be switched rapidly allowing investigators to use multiple ions with different energies to simulate more closely the radiation environment found in space. Here, we exposed a lung cancer susceptible mouse model (K-rasLA-1) to three sequential ion beams: Proton (H) (120 MeV/n) 20 cGy, Helium (He) (250 MeV/n) 5.0 cGy, and Silicon (Si) (300 MeV/n) 5.0 cGy with a dose rate of 0.5 cGy/min. Using three ion beams we performed whole body irradiation with a total dose of 30 cGy in two different orders: 3B-1 (H→He→Si) and 3B-2 (Si→He→H) and used 30 cGy H single-ion beam as a reference. In this study we show that whole-body irradiation with H→He→Si increases the incidence of premalignant lesions and systemic oxidative stress in mice 100 days post-irradiation more than (Si→He→H) and H only irradiation. Additionally, we observed an increase in adenomas with atypia and adenocarcinomas in H→He→Si irradiated mice but not in (Si→He→H) or H (30 cGy) only irradiated mice. When we used the H→He→Si irradiation sequence but skipped a day before exposing the mice to Si, we did not observe the increased incidence of cancer initiation and progression. We also found that a non-toxic anti-inflammatory, anti-oxidative radioprotector (CDDO-EA) reduced H→He→Si induced oxidative stress and cancer initiation almost back to baseline. Thus, exposure to H→He→Si elicits significant changes in lung cancer initiation that can be mitigated using CDDO-EA.
Collapse
Affiliation(s)
- Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sang Bum Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Sevrance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Summer Barron
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James A Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Norbury JW, Schimmerling W, Slaba TC, Azzam EI, Badavi FF, Baiocco G, Benton E, Bindi V, Blakely EA, Blattnig SR, Boothman DA, Borak TB, Britten RA, Curtis S, Dingfelder M, Durante M, Dynan WS, Eisch AJ, Robin Elgart S, Goodhead DT, Guida PM, Heilbronn LH, Hellweg CE, Huff JL, Kronenberg A, La Tessa C, Lowenstein DI, Miller J, Morita T, Narici L, Nelson GA, Norman RB, Ottolenghi A, Patel ZS, Reitz G, Rusek A, Schreurs AS, Scott-Carnell LA, Semones E, Shay JW, Shurshakov VA, Sihver L, Simonsen LC, Story MD, Turker MS, Uchihori Y, Williams J, Zeitlin CJ. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. LIFE SCIENCES IN SPACE RESEARCH 2016; 8:38-51. [PMID: 26948012 PMCID: PMC5771487 DOI: 10.1016/j.lssr.2016.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 05/21/2023]
Abstract
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.
Collapse
Affiliation(s)
| | - Walter Schimmerling
- East Carolina University, Greenville, NC 27858, USA; Universities Space Research Association, Houston, TX 77058, USA
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA 23681, USA
| | | | | | - Giorgio Baiocco
- Department of Physics, University of Pavia, 27100, Pavia, Italy
| | - Eric Benton
- Oklahoma State University, Stillwater, OK 74074, USA
| | | | | | | | - David A Boothman
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | - Stan Curtis
- 11771 Sunset Ave. NE, Bainbridge Island, WA 98110, USA
| | | | - Marco Durante
- GSI Helmholtz Center for Heavy Ion Research, 64291 Darmstadt, Germany
| | | | - Amelia J Eisch
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | - Peter M Guida
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | - Janice L Huff
- Universities Space Research Association, Houston, TX 77058, USA
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Jack Miller
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Livio Narici
- University of Rome Tor Vergata & INFN, 00133 Rome, Italy
| | | | - Ryan B Norman
- NASA Langley Research Center, Hampton, VA 23681, USA
| | | | | | | | - Adam Rusek
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Lembit Sihver
- Technische Universität Wien - Atominstitut, 1020 Vienna, Austria; EBG MedAustron GmbH, 2700 Wiener Neustadt, Austria
| | | | - Michael D Story
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Yukio Uchihori
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | - Cary J Zeitlin
- Lockheed Martin Information Systems & Global Solutions, Houston, TX 77058, USA
| |
Collapse
|
7
|
Buonanno M, De Toledo SM, Howell RW, Azzam EI. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. JOURNAL OF RADIATION RESEARCH 2015; 56:502-8. [PMID: 25805407 PMCID: PMC4426929 DOI: 10.1093/jrr/rrv005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/23/2015] [Indexed: 05/23/2023]
Abstract
During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low 'flux' of the high atomic number and high energy (HZE) radiations relative to the higher 'flux' of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding of the biological effects of low-LET protons and high-LET HZE particles, the interplay between the biochemical processes modulated by these radiations is unclear. Here we show that exposure of normal human fibroblasts to a low mean absorbed dose of 20 cGy of 0.05 or 1-GeV protons (LET ∼ 1.25 or 0.2 keV/μm, respectively) protects the irradiated cells (P < 0.0001) against chromosomal damage induced by a subsequent exposure to a mean absorbed dose of 50 cGy from 1 GeV/u iron ions (LET ∼ 151 keV/μm). Surprisingly, unirradiated (i.e. bystander) cells with which the proton-irradiated cells were co-cultured were also significantly protected from the DNA-damaging effects of the challenge dose. The mitigating effect persisted for at least 24 h. These results highlight the interactions of biological effects due to direct cellular traversal by radiation with those due to bystander effects in cell populations exposed to mixed radiation fields. They show that protective adaptive responses can spread from cells targeted by low-LET space radiation to bystander cells in their vicinity. The findings are relevant to understanding the health hazards of space travel.
Collapse
Affiliation(s)
- Manuela Buonanno
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA Present address: Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Sonia M De Toledo
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Edouard I Azzam
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Maier I, Berry DM, Schiestl RH. Intestinal microbiota reduces genotoxic endpoints induced by high-energy protons. Radiat Res 2014; 181:45-53. [PMID: 24397477 DOI: 10.1667/rr13352.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing space radiation causes oxidative DNA damage and triggers oxidative stress responses, and compromised DNA repair mechanisms can lead to increased risk of carcinogenesis. Young adult mice with developed innate and adaptive immune systems that harbored either a conventional intestinal microbiota (CM) or an intestinal microbiota with a restricted microbial composition (RM) were irradiated with a total dose of 1 Gy delivered by high-energy protons (2.5 GeV/n, LET = 0.2-2 keV/μm) or silicon or iron ions (850 MeV/n, LET ≈ 50 keV/μm and 1 GeV/n, LET = 150 keV/μm, respectively). Six hours after whole-body irradiation, acute chromosomal DNA lesions were observed for RM mice but not CM mice. High-throughput rRNA gene sequencing of intestinal mucosal bacteria showed that Barnesiella intestinihominis and unclassified Bacterodiales were significantly more abundant in male RM mice than CM mice, and phylotype densities changed in irradiated mice. In addition, Helicobacter hepaticus and Bacteroides stercoris were higher in CM than RM mice. Elevated levels of persistently phosphorylated γ-H2AX were observed in RM mice exposed to high-energy protons compared to nonirradiated RM mice, and they also were associated with a decrease of the antioxidant glutathione in peripheral blood measured at four weeks after irradiation. After radiation exposure, CM mice showed lower levels of γ-H2AX phosphorylation than RM mice and an increase in specific RM-associated phylotypes, indicating a down-regulating force on DNA repair by differentially abundant phylotypes in RM versus a radiation-sensitive complex CM.
Collapse
Affiliation(s)
- Irene Maier
- a Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California
| | | | | |
Collapse
|
9
|
Elmore E, Lao XY, Kapadia R, Swete M, Redpath JL. Neoplastic transformation in vitro by mixed beams of high-energy iron ions and protons. Radiat Res 2011; 176:291-302. [PMID: 21732791 DOI: 10.1667/rr2646.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The radiation environment in space is complex in terms of both the variety of charged particles and their dose rates. Simulation of such an environment for experimental studies is technically very difficult. However, with the variety of beams available at the National Space Research Laboratory (NSRL) at Brookhaven National Laboratory (BNL) it is possible to ask questions about potential interactions of these radiations. In this study, the end point examined was transformation in vitro from a preneoplastic to a neoplastic phenotype. The effects of 1 GeV/n iron ions and 1 GeV/n protons alone provided strong evidence for suppression of transformation at doses ≤5 cGy. These ions were also studied in combination in so-called mixed-beam experiments. The specific protocols were a low dose (10 cGy) of protons followed after either 5-15 min (immediate) or 16-24 h (delayed) by 1 Gy of iron ions and a low dose (10 cGy) of iron ions followed after either 5-15 min or 16-24 h by 1 Gy of protons. Within experimental error the results indicated an additive interaction under all conditions with no evidence of an adaptive response, with the one possible exception of 10 cGy iron ions followed immediately by 1 Gy protons. A similar challenge dose protocol was also used in single-beam studies to test for adaptive responses induced by 232 MeV/n protons and (137)Cs γ radiation and, contrary to expectations, none were observed. However, subsequent tests of 10 cGy of (137)Cs γ radiation followed after either 5-15 min or 8 h by 1 Gy of (137)Cs γ radiation did demonstrate an adaptive response at 8 h, pointing out the importance of the interval between adapting and challenge dose. Furthermore, the dose-response data for each ion alone indicate that the initial adapting dose of 10 cGy used in the mixed-beam setting may have been too high to see any potential adaptive response.
Collapse
Affiliation(s)
- E Elmore
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
10
|
Stisova V, Abele WH, Thompson KH, Bennett PV, Sutherland BM. Response of primary human fibroblasts exposed to solar particle event protons. Radiat Res 2011; 176:217-25. [PMID: 21557667 DOI: 10.1667/rr2490.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Solar particle events (SPEs) present a major radiation-related risk for manned exploratory missions in deep space. Within a short period the astronauts may absorb doses that engender acute effects, in addition to the risk of late effects, such as the induction of cancer. Using primary human cells, we studied clonogenic survival and the induction of neoplastic transformation after exposure to a worst case scenario SPE. We simulated such an SPE with monoenergetic protons (50, 100, 1000 MeV) delivered at a dose rate of 1.65 cGy min⁻¹ in a dose range from 0 to 3 Gy. For comparison, we exposed the cells to a high dose rate of 33.3 cGy min⁻¹. X rays (100 kVp, 8 mA, 1.7 mm Al filter) were used as a reference radiation. Overall, we observed a significant sparing effect of the SPE dose rate on cell survival. High-dose-rate protons were also more efficient in induction of transformation in the dose range below 30 cGy. However, as dose accumulated at high dose rate, the transformation levels declined, while at the SPE dose rate, the number of transformants continued to increase up to about 1 Gy. These findings suggest that considering dose-rate effects may be important in evaluating the biological effects of exposure to space radiation. Our analyses of the data based on particle fluence showed that lethality and transforming potential per particle clearly increased with increasing linear energy transfer (LET) and thus with the decreasing energy of protons. Further, we found that the biological response was determined not only by LET but also type of radiation, e.g. particles and photons. This suggests that using γ or X rays may not be ideal for assessing risk associated with SPE exposures.
Collapse
Affiliation(s)
- Viktorie Stisova
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA.
| | | | | | | | | |
Collapse
|
11
|
Eskiocak U, Kim SB, Roig AI, Kitten E, Batten K, Cornelius C, Zou YS, Wright WE, Shay JW. CDDO-Me protects against space radiation-induced transformation of human colon epithelial cells. Radiat Res 2010; 174:27-36. [PMID: 20681796 DOI: 10.1667/rr2155.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced carcinogenesis is a major concern both for astronauts on long-term space missions and for cancer patients being treated with therapeutic radiation. Exposure to radiation induces oxidative stress and chronic inflammation, which are critical initiators and promoters of carcinogenesis. Many studies have demonstrated that non-steroidal anti-inflammatory drugs and antioxidants can reduce the risk of radiation-induced cancer. In this study, we found that a synthetic triterpenoid, CDDO-Me (bardoxolone methyl), was able to protect human colon epithelial cells (HCECs) against radiation-induced transformation. HCECs that were immortalized by ectopic expression of hTERT and cdk4 and exhibit trisomy for chromosome 7 (a non-random chromosome change that occurs in 37% of premalignant colon adenomas) can be transformed experimentally with one combined exposure to 2 Gy of protons at 1 GeV/nucleon followed 24 h later by 50 cGy of (56)Fe ions at 1 GeV/nucleon. Transformed cells showed an increase in proliferation rate and in both anchorage-dependent and independent colony formation ability. A spectrum of chromosome aberrations was observed in transformed cells, with 40% showing loss of 17p (e.g. loss of one copy of p53). Pretreatment of cells with pharmacological doses of CDDO-Me, which has been shown to induce antioxidative as well as anti-inflammatory responses, prevented the heavy-ion-induced increase in proliferation rate and anchorage-dependent and independent colony formation efficiencies. Taken together, these results demonstrate that experimentally immortalized human colon epithelial cells with a non-random chromosome 7 trisomy are valuable premalignant cellular reagents that can be used to study radiation-induced colorectal carcinogenesis. The utility of premalignant HCECs to test novel compounds such as CDDO-Me that can be used to protect against radiation-induced neoplastic transformation is also demonstrated.
Collapse
Affiliation(s)
- Ugur Eskiocak
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Held KD. Effects of low fluences of radiations found in space on cellular systems. Int J Radiat Biol 2009; 85:379-90. [DOI: 10.1080/09553000902838558] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Hada M, Meador JA, Cucinotta FA, Gonda SR, Wu H. Chromosome aberrations induced by dual exposure of protons and iron ions. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2007; 46:125-9. [PMID: 17237947 DOI: 10.1007/s00411-006-0083-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 12/04/2006] [Indexed: 05/13/2023]
Abstract
During space travel, astronauts will be exposed to protons and heavy charged particles. Since the proton flux is high compared to HZE particles, on average, it is assumed that a cell will be hit by a proton before it is hit by an HZE ion. Although the effects of individual ion species on human cells have been investigated extensively, little is known about the effects of exposure to mixed beam irradiation. To address this, we exposed human epithelial cells to protons followed by HZE particles and analyzed chromosomal damage using the multicolor banding in situ hybridization (mBAND) procedure. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of intra-chromosomal aberrations (inversions and deletions within a single painted chromosome) as well as inter-chromosomal aberrations (translocation to unpainted chromosomes). Our results indicated that chromosome aberration frequencies from exposures to protons followed by Fe ions did not simply decrease as the interval between the two exposures increased, but peak when the interval was 30 min.
Collapse
Affiliation(s)
- M Hada
- Universities Space Research Association, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
14
|
Zhou G, Bennett PV, Cutter NC, Sutherland BM. Proton-HZE-Particle Sequential Dual-Beam Exposures Increase Anchorage-Independent Growth Frequencies in Primary Human Fibroblasts. Radiat Res 2006; 166:488-94. [PMID: 16953667 DOI: 10.1667/rr0596.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The radiation field in deep space contains high levels of high-energy protons and substantially lower levels of high-atomic-number, high-energy (HZE) particles. Calculations indicate that cellular nuclei of human space travelers will be hit during a 3-year Mars mission by approximately 400 protons and approximately 0.4 HZE particles. Thus most cells in astronauts will be hit by a proton(s) before being hit by an HZE particle. To investigate effects of dual ion irradiations on human cells, we irradiated primary human neonatal fibroblasts with protons (1 GeV/nucleon, 20 cGy) followed from 2.5 min to 48 h later by iron or titanium ions (1 GeV/nucleon, 20 cGy) and then measured clonogenic survival and frequency of anchorage-independent growth. This frequency depends on the interval between hydrogen- and iron-ion irradiation, with a critical window between 2.5 min and 1 h producing about three times more anchorage-independent colonies per survivor than expected from simple addition of the two ions separately. The hydrogen-titanium-ion dual-beam irradiation produced similar increases that persisted to approximately 6 h. At longer intervals, anchorage-independent growth frequencies were similar to those expected for additivity. However, irradiation of cells with either an iron or a titanium particle first followed by protons produced only additive levels.
Collapse
Affiliation(s)
- Guangming Zhou
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | | | | |
Collapse
|