1
|
Xingrong L, Gorish BMT, Qaria MA, Hussain A, Abdelmula WIY, Zhu D. Unlocking Ectoine's Postbiotic Therapeutic Promise: Mechanisms, Applications, and Future Directions. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10506-5. [PMID: 40072821 DOI: 10.1007/s12602-025-10506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Ectoine, a cytoprotective compound derived from bacteria and categorized as a postbiotic, is increasingly recognized as a viable alternative to traditional therapeutic agents, frequently presenting considerable side effects. This extensive review underscores the effectiveness of ectoine as a postbiotic in managing conditions such as rhinosinusitis, atopic dermatitis, and allergic rhinitis, all while demonstrating a commendable safety profile. Its capacity to establish robust hydrogen bonds without compromising cellular integrity supports its potential application in anti-aging and cancer prevention strategies. Recent studies have clarified ectoine's function in alleviating oxidative stress caused by environmental pollutants and ultraviolet radiation, broadening its advantages for skin and ecological health. The review details ectoine's mechanisms of action, which include the protection of cellular macromolecules, modulation of inflammation, and prevention of apoptosis, while also highlighting emerging research that positions ectoine as a promising postbiotic candidate for therapeutic strategies in neurological disorders such as Alzheimer's disease, autoimmune conditions, and metabolic syndromes. Additionally, the review addresses challenges such as the low bioavailability of ectoine in eukaryotic cells, the constraints on scalability for industrial production, and the high costs associated with synthetic biology methods. Future prospects for ectoine as a postbiotic therapeutic option are also discussed, including the potential for advanced delivery systems, such as ectoine-loaded nanoparticles and hydrogels, to improve stability and bioavailability, as well as synergistic combinations with phytochemicals like resveratrol and curcumin to enhance therapeutic efficacy. Integrating artificial intelligence into ectoine research revolutionizes understanding its therapeutic properties, streamlining drug formulation and clinical applications. By synthesizing insights into ectoine's molecular mechanisms and investigating new therapeutic pathways, this review advocates for advancing ectoine as a natural postbiotic therapeutic agent, addressing contemporary health challenges while meeting the growing demand for safer alternatives.
Collapse
Affiliation(s)
- Liu Xingrong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Babbiker Mohammed Taher Gorish
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Majjid A Qaria
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Arif Hussain
- Independent Researcher, Hyderabad, Telangana, 500034, India
| | - Waha Ismail Yahia Abdelmula
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
2
|
Mansouri E, Mesbahi A, Hejazi MS, Montazersaheb S, Tarhriz V, Ghasemnejad T, Zarei M. Nanoscopic biodosimetry using plasmid DNA in radiotherapy with metallic nanoparticles. J Appl Clin Med Phys 2022; 24:e13879. [PMID: 36546569 PMCID: PMC9924121 DOI: 10.1002/acm2.13879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Nanoscopic lesions (complex damages), are the most lethal lesions for the cells. As nanoparticles have become increasingly popular in radiation therapy and the importance of analyzing nanoscopic dose enhancement has increased, a reliable tool for nanodosimetry has become indispensable. In this regard, the DNA plasmid is a widely used tool as a nanodosimetry probe in radiobiology and nano-radiosensitization studies. This approach is helpful for unraveling the radiosensitization role of nanoparticles in terms of physical and physicochemical effects and for quantifying radiation-induced biological damage. This review discusses the potential of using plasmid DNA assays for assessing the relative effects of nano-radiosensitizers, which can provide a theoretical basis for the development of nanoscopic biodosimetry and nanoparticle-based radiotherapy.
Collapse
Affiliation(s)
- Elham Mansouri
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asghar Mesbahi
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran,Medical Physics DepartmentMedical SchoolTabriz University of Medical SciencesTabrizIran
| | - Mohammad Saied Hejazi
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Soheila Montazersaheb
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Vahideh Tarhriz
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Tohid Ghasemnejad
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Mojtaba Zarei
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
3
|
Assessing the DNA Damaging Effectiveness of Ionizing Radiation Using Plasmid DNA. Int J Mol Sci 2022; 23:ijms232012459. [PMID: 36293322 PMCID: PMC9604049 DOI: 10.3390/ijms232012459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmid DNA is useful for investigating the DNA damaging effects of ionizing radiation. In this study, we have explored the feasibility of plasmid DNA-based detectors to assess the DNA damaging effectiveness of two radiotherapy X-ray beam qualities after undergoing return shipment of ~8000 km between two institutions. The detectors consisted of 18 μL of pBR322 DNA enclosed with an aluminum seal in nine cylindrical cavities drilled into polycarbonate blocks. We shipped them to Toronto, Canada for irradiation with either 100 kVp or 6 MV X-ray beams to doses of 10, 20, and 30 Gy in triplicate before being shipped back to San Diego, USA. The Toronto return shipment also included non-irradiated controls and we kept a separate set of controls in San Diego. In San Diego, we quantified DNA single strand breaks (SSBs), double strand breaks (DSBs), and applied Nth and Fpg enzymes to quantify oxidized base damage. The rate of DSBs/Gy/plasmid was 2.8±0.7 greater for the 100 kVp than the 6 MV irradiation. The 100 kVp irradiation also resulted in 5±2 times more DSBs/SSB than the 6 MV beam, demonstrating that the detector is sensitive enough to quantify relative DNA damage effectiveness, even after shipment over thousands of kilometers.
Collapse
|
4
|
Frame CM, Chen Y, Gagnon J, Yuan Y, Ma T, Dritschilo A, Pang D. Proton induced DNA double strand breaks at the Bragg peak: Evidence of enhanced LET effect. Front Oncol 2022; 12:930393. [PMID: 35992825 PMCID: PMC9388940 DOI: 10.3389/fonc.2022.930393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo investigate DNA double strand breaks (DSBs) induced by therapeutic proton beams in plateau and Bragg peak to demonstrate DSB induction due to the higher LET in the Bragg peak.Materials and MethodspUC19 plasmid DNA samples were irradiated to doses of 1000 and 3000 Gy on a Mevion S250i proton system with a monoenergetic, 110 MeV, proton beam at depths of 2 and 9.4 cm, corresponding to a position on the plateau and distal Bragg peak of the beam, respectively. The irradiated DNA samples were imaged by atomic force microscopy for visualization of individual DNA molecules, either broken or intact, and quantification of the DNA fragment length distributions for each of the irradiated samples. Percentage of the broken DNA and average number of DSBs per DNA molecule were obtained.ResultsCompared to irradiation effects in the plateau region, DNA irradiated at the Bragg peak sustained more breakage at the same dose, yielding more short DNA fragments and higher numbers of DSB per DNA molecule.ConclusionThe higher LET of proton beams at the Bragg peak results in more densely distributed DNA DSBs, which supports an underlying mechanism for the increased cell killing by protons at the Bragg peak.
Collapse
|
5
|
Main KHS, Provan JI, Haynes PJ, Wells G, Hartley JA, Pyne ALB. Atomic force microscopy-A tool for structural and translational DNA research. APL Bioeng 2021; 5:031504. [PMID: 34286171 PMCID: PMC8272649 DOI: 10.1063/5.0054294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) is a powerful imaging technique that allows for structural characterization of single biomolecules with nanoscale resolution. AFM has a unique capability to image biological molecules in their native states under physiological conditions without the need for labeling or averaging. DNA has been extensively imaged with AFM from early single-molecule studies of conformational diversity in plasmids, to recent examinations of intramolecular variation between groove depths within an individual DNA molecule. The ability to image dynamic biological interactions in situ has also allowed for the interaction of various proteins and therapeutic ligands with DNA to be evaluated-providing insights into structural assembly, flexibility, and movement. This review provides an overview of how innovation and optimization in AFM imaging have advanced our understanding of DNA structure, mechanics, and interactions. These include studies of the secondary and tertiary structure of DNA, including how these are affected by its interactions with proteins. The broader role of AFM as a tool in translational cancer research is also explored through its use in imaging DNA with key chemotherapeutic ligands, including those currently employed in clinical practice.
Collapse
Affiliation(s)
| | - James I. Provan
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - John A. Hartley
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | | |
Collapse
|
6
|
Ray U, Sharma S, Kapoor I, Kumari S, Gopalakrishnan V, Vartak SV, Kumari N, Varshney U, Raghavan SC. G4 DNA present at human telomeric DNA contributes toward reduced sensitivity to γ-radiation induced oxidative damage, but not bulky adduct formation. Int J Radiat Biol 2021; 97:1166-1180. [PMID: 34259614 DOI: 10.1080/09553002.2021.1955997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE DNA, the hereditary material of a human cell generally exists as Watson-Crick base paired double-stranded B-DNA. Studies suggest that DNA can also exist in non-B forms, such as four stranded G-quadruplexes (G4 DNA). Recently, our studies revealed that the regions of DNA that can fold into G-quadruplex structures are less sensitive to ionizing radiation (IR) compared to B-DNA. Importantly, we reported that the planar G-quartet of a G4 structure is shielded from radiation induced DNA breaks, while the single- and double-stranded DNA regions remained susceptible. Thus, in the present study, we investigate whether telomeric repeat DNA present at the end of telomere, known to fold into G4 DNA can protect from radiation induced damages including strand breaks, oxidation of purines and bulky adduct formation on DNA. MATERIALS AND METHODS For plasmid irradiation assay, plasmids containing human telomeric repeat DNA sequence TTAGGG (0.8 kb or 1.8 kb) were irradiated with increasing doses of IR along with appropriate control plasmids and products were resolved on 1% agarose gel. Radioprotection was evaluated based on extent of conversion of supercoiled to nicked or linear forms of the DNA following irradiation. Formation of G-quadruplex structure on supercoiled DNA was evaluated based on circular dichroism (CD) spectroscopy studies. Cleavage of radiation induced oxidative damage and extent of formation of nicks was further evaluated using base and nucleotide excision repair proteins. RESULTS Results from CD studies showed that the plasmid DNA harboring human telomeric repeats (TTAGGG) can fold into G-quadruplex DNA structures. Further, results showed that human telomeric repeat sequence when present on a plasmid can protect the plasmid DNA against IR induced DNA strand breaks, unlike control plasmids bearing random DNA sequence. CONCLUSIONS Human telomeric repeat sequence when present on plasmids can fold into G-quadruplex DNA structures, and can protect the DNA against IR induced DNA strand breaks and oxidative damage. These results in conjunction with our previous studies suggest that telomeric repeat sequence imparts less sensitivity to IR and thus telomeres of chromosomes are protected from radiation.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Indu Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Department of Zoology, St. Joseph's College, Irinjalakuda, India
| | - Supriya V Vartak
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
7
|
Nickoloff JA, Sharma N, Taylor L. Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy. Genes (Basel) 2020; 11:E99. [PMID: 31952359 PMCID: PMC7017136 DOI: 10.3390/genes11010099] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 01/03/2023] Open
Abstract
Cells manage to survive, thrive, and divide with high accuracy despite the constant threat of DNA damage. Cells have evolved with several systems that efficiently repair spontaneous, isolated DNA lesions with a high degree of accuracy. Ionizing radiation and a few radiomimetic chemicals can produce clustered DNA damage comprising complex arrangements of single-strand damage and DNA double-strand breaks (DSBs). There is substantial evidence that clustered DNA damage is more mutagenic and cytotoxic than isolated damage. Radiation-induced clustered DNA damage has proven difficult to study because the spectrum of induced lesions is very complex, and lesions are randomly distributed throughout the genome. Nonetheless, it is fairly well-established that radiation-induced clustered DNA damage, including non-DSB and DSB clustered lesions, are poorly repaired or fail to repair, accounting for the greater mutagenic and cytotoxic effects of clustered lesions compared to isolated lesions. High linear energy transfer (LET) charged particle radiation is more cytotoxic per unit dose than low LET radiation because high LET radiation produces more clustered DNA damage. Studies with I-SceI nuclease demonstrate that nuclease-induced DSB clusters are also cytotoxic, indicating that this cytotoxicity is independent of radiogenic lesions, including single-strand lesions and chemically "dirty" DSB ends. The poor repair of clustered DSBs at least in part reflects inhibition of canonical NHEJ by short DNA fragments. This shifts repair toward HR and perhaps alternative NHEJ, and can result in chromothripsis-mediated genome instability or cell death. These principals are important for cancer treatment by low and high LET radiation.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (N.S.); (L.T.)
| | | | | |
Collapse
|
8
|
G-quadruplex Structures Contribute to Differential Radiosensitivity of the Human Genome. iScience 2019; 21:288-307. [PMID: 31678912 PMCID: PMC6838516 DOI: 10.1016/j.isci.2019.10.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/12/2019] [Accepted: 10/16/2019] [Indexed: 02/04/2023] Open
Abstract
DNA, the fundamental unit of human cell, generally exists in Watson-Crick base-paired B-DNA form. Often, DNA folds into non-B forms, such as four-stranded G-quadruplexes. It is generally believed that ionizing radiation (IR) induces DNA strand-breaks in a random manner. Here, we show that regions of DNA enriched in G-quadruplex structures are less sensitive to IR compared with B-DNA in vitro and inside cells. Planar G-quartet of G4-DNA is shielded from IR-induced free radicals, unlike single- and double-stranded DNA. Whole-genome sequence analysis and real-time PCR reveal that genomic regions abundant in G4-DNA are protected from radiation-induced breaks and can be modulated by G4 stabilizers. Thus, our results reveal that formation of G4 structures contribute toward differential radiosensitivity of the human genome. G4 DNA contributes to genome-wide radioprotection and is modulated by G4 resolvases Radiation causes minimal damage at the G4 structures at telomeres Formation of G4 DNA contributes toward differential radiosensitivity of human genome Planar quartet of G4 DNA is shielded from IR-induced free radicals and thus DNA breaks
Collapse
|
9
|
Abstract
Compromised detection of short DNA fragments can result in underestimation of radiation-induced clustered DNA damage. The fragments can be detected with atomic force microscopy (AFM), followed by image analysis to compute the length of plasmid molecules. Plasmid molecules imaged with AFM are represented by open or closed curves, possibly with crossings. For the analysis of such objects, a dedicated algorithm was developed, and its usability was demonstrated on the AFM images of plasmid pBR322 irradiated with 60Co gamma rays. The analysis of the set of the acquired AFM images revealed the presence of DNA fragments with lengths shorter than 300 base pairs that would have been neglected by a conventional detection method.
Collapse
|
10
|
Šefl M, Pachnerová Brabcová K, Štěpán V. Dosimetry as a Catch in Radiobiology Experiments. Radiat Res 2018; 190:404-411. [PMID: 30016217 DOI: 10.1667/rr15020.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Experimental radiobiological studies in which the effects of ionizing radiation on a biological model are examined often highlight the biological aspects while missing detailed descriptions of the geometry, sample and dosimetric methods used. Such omissions can hinder the reproducibility and comparability of the experimental data. An application based on the Geant4 simulation toolkit was developed to design experiments using a biological solution placed in a microtube. The application was used to demonstrate the influence of the type of microtube, sample volume and energy of a proton source on the dose distribution across the sample, and on the mean dose in the whole sample. The results shown here are for samples represented by liquid water in the 0.4-, 1.5- and 2.0-ml microtubes irradiated with 20, 30 and 100 MeV proton beams. The results of this work demonstrate that the mean dose and homogeneity of the dose distribution within the sample strongly depend on all three parameters. Furthermore, this work shows how the dose uncertainty propagates into the scored primary DNA damages in plasmid DNA studies using agarose gel electrophoresis. This application is provided freely to assist users in verifying their experimental setup prior to the experiment.
Collapse
Affiliation(s)
- Martin Šefl
- a Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic.,b Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | | | - Václav Štěpán
- a Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Hahn MB, Meyer S, Schröter MA, Seitz H, Kunte HJ, Solomun T, Sturm H. Direct electron irradiation of DNA in a fully aqueous environment. Damage determination in combination with Monte Carlo simulations. Phys Chem Chem Phys 2018; 19:1798-1805. [PMID: 28059422 DOI: 10.1039/c6cp07707b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSBs) and double-strand breaks (DSBs), was determined by gel electrophoresis. The median lethal dose of D1/2 = 1.7 ± 0.3 Gy was found to be much smaller as compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of the DSBs to SSBs was found to be 1 : 12 as compared to 1 : 88 found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, co-solutes) for an electron energy range which is difficult to probe by standard methods.
Collapse
Affiliation(s)
- Marc Benjamin Hahn
- Free University Berlin, Department of Physics, D-14195 Berlin, Germany. and Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Susann Meyer
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and University of Potsdam, Institute of Biochemistry and Biology, D-14476 Potsdam, Germany
| | | | - Harald Seitz
- Fraunhofer-Institut für Zelltherapie und Immunologie, Institutsteil Bioanalytik und Bioprozesse, D-14476 Potsdam, Germany
| | - Hans-Jörg Kunte
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Tihomir Solomun
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and Technical University Berlin, D-10587 Berlin, Germany
| |
Collapse
|
12
|
Tan HQ, Mi Z, Bettiol AA. Simple and universal model for electron-impact ionization of complex biomolecules. Phys Rev E 2018; 97:032403. [PMID: 29776024 DOI: 10.1103/physreve.97.032403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 11/07/2022]
Abstract
We present a simple and universal approach to calculate the total ionization cross section (TICS) for electron impact ionization in DNA bases and other biomaterials in the condensed phase. Evaluating the electron impact TICS plays a vital role in ion-beam radiobiology simulation at the cellular level, as secondary electrons are the main cause of DNA damage in particle cancer therapy. Our method is based on extending the dielectric formalism. The calculated results agree well with experimental data and show a good comparison with other theoretical calculations. This method only requires information of the chemical composition and density and an estimate of the mean binding energy to produce reasonably accurate TICS of complex biomolecules. Because of its simplicity and great predictive effectiveness, this method could be helpful in situations where the experimental TICS data are absent or scarce, such as in particle cancer therapy.
Collapse
Affiliation(s)
- Hong Qi Tan
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117551
| | - Zhaohong Mi
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117551
| | - Andrew A Bettiol
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore 117551
| |
Collapse
|
13
|
Abstract
Ectoine plays an important role in protecting biomolecules and entire cells against environmental stressors such as salinity, freezing, drying and high temperatures. Recent studies revealed that ectoine also provides effective protection for human skin cells from damage caused by UV-A radiation. These protective properties make ectoine a valuable compound and it is applied as an active ingredient in numerous pharmaceutical devices and cosmetics. Interestingly, the underlying mechanism resulting in protecting cells from radiation is not yet fully understood. Here we present a study on ectoine and its protective influence on DNA during electron irradiation. Applying gel electrophoresis and atomic force microscopy, we demonstrate for the first time that ectoine prevents DNA strand breaks caused by ionizing electron radiation. The results presented here point to future applications of ectoine for instance in cancer radiation therapy.
Collapse
|
14
|
Pater P, Bäckstöm G, Villegas F, Ahnesjö A, Enger SA, Seuntjens J, El Naqa I. Proton and light ion RBE for the induction of direct DNA double strand breaks. Med Phys 2017; 43:2131. [PMID: 27147325 DOI: 10.1118/1.4944870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To present and characterize a Monte Carlo (MC) tool for the simulation of the relative biological effectiveness for the induction of direct DNA double strand breaks (RBEDSB (direct)) for protons and light ions. METHODS The MC tool uses a pregenerated event-by-event tracks library of protons and light ions that are overlaid on a cell nucleus model. The cell nucleus model is a cylindrical arrangement of nucleosome structures consisting of 198 DNA base pairs. An algorithm relying on k-dimensional trees and cylindrical symmetries is used to search coincidences of energy deposition sites with volumes corresponding to the sugar-phosphate backbone of the DNA molecule. Strand breaks (SBs) are scored when energy higher than a threshold is reached in these volumes. Based on the number of affected strands, they are categorized into either single strand break (SSB) or double strand break (DSB) lesions. The number of SBs composing each lesion (i.e., its size) is also recorded. RBEDSB (direct) is obtained by taking the ratio of DSB yields of a given radiation field to a (60)Co field. The MC tool was used to obtain SSB yields, DSB yields, and RBEDSB (direct) as a function of linear energy transfer (LET) for protons ((1)H(+)), (4)He(2+), (7)Li(3+), and (12)C(6+) ions. RESULTS For protons, the SSB yields decreased and the DSB yields increased with LET. At ≈24.5 keV μm(-1), protons generated 15% more DSBs than (12)C(6+) ions. The RBEDSB (direct) varied between 1.24 and 1.77 for proton fields between 8.5 and 30.2 keV μm(-1), and it was higher for iso-LET ions with lowest atomic number. The SSB and DSB lesion sizes showed significant differences for all radiation fields. Generally, the yields of SSB lesions of sizes ≥2 and the yields of DSB lesions of sizes ≥3 increased with LET and increased for iso-LET ions of lower atomic number. On the other hand, the ratios of SSB to DSB lesions of sizes 2-4 did not show variability with LET nor projectile atomic number, suggesting that these metrics are independent of the radiation quality. Finally, a variance of up to 8% in the DSB yields was observed as a function of the particle incidence angle on the cell nucleus. This simulation effect is due to the preferential alignment of ion tracks with the DNA nucleosomes at specific angles. CONCLUSIONS The MC tool can predict SSB and DSB yields for light ions of various LET and estimate RBEDSB (direct). In addition, it can calculate the frequencies of different DNA lesion sizes, which is of interest in the context of biologically relevant absolute dosimetry of particle beams.
Collapse
Affiliation(s)
- Piotr Pater
- Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Gloria Bäckstöm
- Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Fernanda Villegas
- Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala SE-75185, Sweden
| | - Anders Ahnesjö
- Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala SE-75185, Sweden
| | - Shirin A Enger
- Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Issam El Naqa
- Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
15
|
Pang D, Chasovskikh S, Rodgers JE, Dritschilo A. Short DNA Fragments Are a Hallmark of Heavy Charged-Particle Irradiation and May Underlie Their Greater Therapeutic Efficacy. Front Oncol 2016; 6:130. [PMID: 27376024 PMCID: PMC4901041 DOI: 10.3389/fonc.2016.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/16/2016] [Indexed: 11/13/2022] Open
Abstract
Growing interest in proton and heavy ion therapy has reinvigorated research into the fundamental biological mechanisms underlying the therapeutic efficacy of charged-particle radiation. To improve our understanding of the greater biological effectiveness of high-LET radiations, we have investigated DNA double-strand breaks (DSBs) following exposure of plasmid DNA to low-LET Co-60 gamma photon and electron irradiation and to high-LET Beryllium and Argon ions with atomic force microscopy. The sizes of DNA fragments following radiation exposure were individually measured to construct fragment size distributions from which the DSB per DNA molecule and DSB spatial distributions were derived. We report that heavy charged particles induce a significantly larger proportion of short DNA fragments in irradiated DNA molecules, reflecting densely and clustered damage patterns of high-LET energy depositions. We attribute the enhanced short DNA fragmentation following high-LET radiations as an important determinant of the observed, enhanced biological effectiveness of high-LET irradiations.
Collapse
Affiliation(s)
- Dalong Pang
- Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| | - Sergey Chasovskikh
- Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| | - James E Rodgers
- Radiation Oncology, Medstar Franklin Square Medical Center , Rosedale, MD , USA
| | - Anatoly Dritschilo
- Radiation Medicine, Georgetown University Medical Center , Washington, DC , USA
| |
Collapse
|
16
|
Pang D, Thierry AR, Dritschilo A. DNA studies using atomic force microscopy: capabilities for measurement of short DNA fragments. Front Mol Biosci 2015; 2:1. [PMID: 25988169 PMCID: PMC4429637 DOI: 10.3389/fmolb.2015.00001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/02/2015] [Indexed: 01/05/2023] Open
Abstract
Short DNA fragments, resulting from ionizing radiation induced DNA double strand breaks (DSBs), or released from cells as a result of physiological processes and circulating in the blood stream, may play important roles in cellular function and potentially in disease diagnosis and early intervention. The size distribution of DNA fragments contribute to knowledge of underlining biological processes. Traditional techniques used in radiation biology for DNA fragment size measurements lack the resolution to quantify short DNA fragments. For the measurement of cell-free circulating DNA (ccfDNA), real time quantitative Polymerase Chain Reaction (q-PCR) provides quantification of DNA fragment sizes, concentration and specific gene mutation. A complementary approach, the imaging-based technique using Atomic Force Microscopy (AFM) provides direct visualization and measurement of individual DNA fragments. In this review, we summarize and discuss the application of AFM-based measurements of DNA fragment sizes. Imaging of broken plasmid DNA, as a result of exposure to ionizing radiation, as well as ccfDNA in clinical specimens offer an innovative approach for studies of short DNA fragments and their biological functions.
Collapse
Affiliation(s)
- Dalong Pang
- Department of Radiation Medicine, Georgetown University Medical Center Washington, DC, USA
| | - Alain R Thierry
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896 Montpellier, France
| | - Anatoly Dritschilo
- Department of Radiation Medicine, Georgetown University Medical Center Washington, DC, USA
| |
Collapse
|
17
|
Vanderlinden W, Blunt M, David CC, Moucheron C, Kirsch-De Mesmaeker A, De Feyter S. Mesoscale DNA Structural Changes on Binding and Photoreaction with Ru[(TAP)2PHEHAT]2+. J Am Chem Soc 2012; 134:10214-21. [DOI: 10.1021/ja303091q] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Willem Vanderlinden
- Department of Chemistry, Laboratory
of Photochemistry and Spectroscopy, Division of Molecular Imaging
and Photonics, KU Leuven, Celestijnenlaan
200F, 3001 Leuven, Belgium
| | - Matthew Blunt
- Department of Chemistry, Laboratory
of Photochemistry and Spectroscopy, Division of Molecular Imaging
and Photonics, KU Leuven, Celestijnenlaan
200F, 3001 Leuven, Belgium
| | - Charlotte C. David
- Department of Chemistry, Laboratory
of Photochemistry and Spectroscopy, Division of Molecular Imaging
and Photonics, KU Leuven, Celestijnenlaan
200F, 3001 Leuven, Belgium
| | - Cécile Moucheron
- Department of Chemistry, Laboratory
of Organic Chemistry and Photochemistry, Université Libre de Bruxelles, Avenue Franklin D. Roosevelt 50,
1050 Brussels, Belgium
| | - Andrée Kirsch-De Mesmaeker
- Department of Chemistry, Laboratory
of Organic Chemistry and Photochemistry, Université Libre de Bruxelles, Avenue Franklin D. Roosevelt 50,
1050 Brussels, Belgium
| | - Steven De Feyter
- Department of Chemistry, Laboratory
of Photochemistry and Spectroscopy, Division of Molecular Imaging
and Photonics, KU Leuven, Celestijnenlaan
200F, 3001 Leuven, Belgium
| |
Collapse
|
18
|
González LN, Arruda-Neto JDT, Cotta MA, Carrer H, Garcia F, Silva RAS, Moreau ALD, Righi H, Genofre GC. DNA fragmentation by gamma radiation and electron beams using atomic force microscopy. J Biol Phys 2012; 38:531-42. [PMID: 23729912 DOI: 10.1007/s10867-012-9270-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 04/24/2012] [Indexed: 10/28/2022] Open
Abstract
Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.
Collapse
Affiliation(s)
- Luis Nieto González
- Departamento de Ciência e Tecnologia, Universidade Estadual de Santa Cruz, Ilhéus, BA Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pang D, Winters TA, Jung M, Purkayastha S, Cavalli LR, Chasovkikh S, Haddad BR, Dritschilo A. Radiation-generated short DNA fragments may perturb non-homologous end-joining and induce genomic instability. JOURNAL OF RADIATION RESEARCH 2011; 52:309-19. [PMID: 21628845 PMCID: PMC5469405 DOI: 10.1269/jrr.10147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cells exposed to densely ionizing radiation (high-LET) experience more severe biological damage than do cells exposed to sparsely ionizing radiation (low-LET). The prevailing hypothesis is that high-LET radiations induce DNA double strand-breaks (DSB) that are more complex and clustered, and are thereby more challenging to repair. Here, we present experimental data obtained by atomic force microscopy imaging, DNA-dependent protein kinase (DNA-PK) activity determination, DNA ligation assays, and genomic studies to suggest that short DNA fragments are important products of radiation-induced DNA lesions, and that the lengths of DNA fragments may be significant in the cellular responses to ionizing radiation. We propose the presence of a subset of short DNA fragments that may affect cell survival and genetic stability following exposure to ionizing radiation, and that the enhanced biological effects of high-LET radiation may be explained, in part, by the production of increased quantities of short DNA fragments.
Collapse
Affiliation(s)
- Dalong Pang
- Department of Radiation Medicine, Georgetown University Medical Center
| | - Thomas A. Winters
- Radiology and Imaging Sciences Department, Warren Grant Magnuson Clinical Center, National Institutes of Health
| | - Mira Jung
- Department of Radiation Medicine, Georgetown University Medical Center
| | - Shubhadeep Purkayastha
- Radiology and Imaging Sciences Department, Warren Grant Magnuson Clinical Center, National Institutes of Health
| | - Luciane R. Cavalli
- Department of Oncology/Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Sergey Chasovkikh
- Department of Radiation Medicine, Georgetown University Medical Center
| | - Bassem R. Haddad
- Department of Oncology/Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | - Anatoly Dritschilo
- Department of Radiation Medicine, Georgetown University Medical Center
- Corresponding author: Anatoly Dritschilo, MD, Department of Radiation Medicine, Georgetown University Medical Center, 3800 Reservoir Road, NW, LL Bles Washington, DC 20007
| |
Collapse
|
20
|
Jiang Y, Rabbi M, Mieczkowski PA, Marszalek PE. Separating DNA with different topologies by atomic force microscopy in comparison with gel electrophoresis. J Phys Chem B 2010; 114:12162-5. [PMID: 20799746 DOI: 10.1021/jp105603k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic force microscopy, which is normally used for DNA imaging to gain qualitative results, can also be used for quantitative DNA research, at a single-molecular level. Here, we evaluate the performance of AFM imaging specifically for quantifying supercoiled and relaxed plasmid DNA fractions within a mixture, and compare the results with the bulk material analysis method, gel electrophoresis. The advantages and shortcomings of both methods are discussed in detail. Gel electrophoresis is a quick and well-established quantification method. However, it requires a large amount of DNA, and needs to be carefully calibrated for even slightly different experimental conditions for accurate quantification. AFM imaging is accurate, in that single DNA molecules in different conformations can be seen and counted. When used carefully with necessary correction, both methods provide consistent results. Thus, AFM imaging can be used for DNA quantification, as an alternative to gel electrophoresis.
Collapse
Affiliation(s)
- Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu 211189, People's Republic of China.
| | | | | | | |
Collapse
|
21
|
Yoshikawa Y, Mori T, Suzuki M, Imanaka T, Yoshikawa K. Comparative study of kinetics on DNA double-strand break induced by photo- and gamma-irradiation: Protective effect of water-soluble flavonoids. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Tsoi M, Do TT, Tang V, Aguilera JA, Perry CC, Milligan JR. Characterization of condensed plasmid DNA models for studying the direct effect of ionizing radiation. Biophys Chem 2010; 147:104-10. [PMID: 20096988 DOI: 10.1016/j.bpc.2009.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/19/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
Abstract
We have examined the changes in physical properties of aqueous solutions of the plasmid pUC18 that take place on the addition of the cationic oligopeptide penta-arginine. An increase in sedimentation rate and static light scattering, and changes in the nucleic acid CD spectrum all suggest that this ligand acts to condense the plasmid. Dynamic light scattering suggests the hydrodynamic radii of the condensate particles are a few micrometers, ca. 50-fold larger than that of the monomeric plasmid. Condensation of the plasmid also produces a ca. 100-fold decrease in the strand break yield produced by gamma irradiation. This extensive protection against reactive intermediates in the bulk of the solution implies that condensed plasmid DNA may offer a model system with which to study the direct effect of ionizing radiation (ionization of the DNA itself). The use of peptide ligands as condensing agents in this application is attractive because the derivatives of several amino acids (particularly tryptophan and tyrosine) have been shown to modify the radiation chemistry of DNA extensively.
Collapse
Affiliation(s)
- Mandi Tsoi
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610, USA
| | | | | | | | | | | |
Collapse
|
23
|
Gudowska-Nowak E, Psonka-Antończyk K, Weron K, Elsässer T, Taucher-Scholz G. Distribution of DNA fragment sizes after irradiation with ions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 30:317-324. [PMID: 19823885 DOI: 10.1140/epje/i2009-10522-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/09/2009] [Accepted: 09/18/2009] [Indexed: 05/28/2023]
Abstract
Ionizing radiation is responsible for production of double-strand breaks (DSBs) in a DNA structure. In contrast to sparsely ionizing radiation, densely ionizing radiation produces DSBs that are non-randomly distributed along the DNA molecule and can form clusters of various size. The paper discusses minimalistic models that describe observable patterns of fragment length in DNA segments irradiated with heavy ions and applies the formalism to interpret the recent experimental data collected by use of atomic force microscope (AFM).
Collapse
Affiliation(s)
- E Gudowska-Nowak
- Marian Smoluchowski Institute of Physics, Jagellonian University, Kraków, Poland.
| | | | | | | | | |
Collapse
|
24
|
Psonka-Antonczyk K, Elsässer T, Gudowska-Nowak E, Taucher-Scholz G. Distribution of double-strand breaks induced by ionizing radiation at the level of single DNA molecules examined by atomic force microscopy. Radiat Res 2009; 172:288-95. [PMID: 19708777 DOI: 10.1667/rr1772.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Double-strand breaks (DSBs) are the most critical radiation-induced lesions, because they result in the fragmentation of the DNA molecule and because a single unrepaired DSB may lead to cell death. We present the results of radiation-induced fragmentation of plasmid DNA analyzed by atomic force microscopy (AFM) to allow the visualization of individual DNA molecules. Linear PhiX174 plasmid DNA was exposed to a wide range of doses of low-LET X rays and high-LET carbon, nickel and uranium ions. The induced DNA fragments were detected and measured based on the recorded AFM images and fragment length distributions were derived for each radiation type and dose. The results show a dose- and radiation type-dependent DNA fragmentation with a significantly larger fraction of short fragments produced by high-LET radiation compared to X rays. This can be considered as experimental evidence of DSB clustering due to inhomogeneous energy deposition at the level of the plasmid DNA molecule. Additionally, the experimentally derived fragment profiles were compared and found to be in agreement with the prediction of a model simulating the fragmentation of DNA molecules induced by radiation.
Collapse
Affiliation(s)
- K Psonka-Antonczyk
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Biophysics Group, Darmstadt, Germany
| | | | | | | |
Collapse
|
25
|
Brezeanu M, Träger F, Hubenthal F. Scanning force microscopy studies of X-ray-induced double-strand breaks in plasmid DNA. J Biol Phys 2009; 35:163-74. [PMID: 19669559 PMCID: PMC2669120 DOI: 10.1007/s10867-009-9137-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022] Open
Abstract
We present an analysis of X-ray-induced damage in PhiX174 plasmid DNA, applying doses between D = 250 and 1,500 Gy. To analyse this damage in detail, the distribution of plasmid fragments after irradiation have been determined by scanning force microscopy. The results show that even for the lowest dose of D = 250 Gy, a significant amount of double-strand breaks are observed. For increasing dose, the percentage of small fragments increases and is accompanied by a shortening of the average fragment length from < L > = 1,400 nm for a dose of D = 250 Gy to < L > = 1,080 nm after irradiation with D = 1,500 Gy. The most crucial parameter, the average number of double-strand breaks per broken plasmid ( ) has been determined for the first time for the applied doses. The results show that the average number of DSBs per broken plasmid increases almost linearly from a value of = 1.3 after irradiation with D = 250 Gy to = 1.7 after exposure to D = 1,500 Gy. The presented results show that the amount of DSBs induced by X-ray radiation in plasmid DNA can be calculated with high accuracy by means of scanning force microscopy, providing relevant information regarding the interaction of X-rays with DNA molecules.
Collapse
Affiliation(s)
- M Brezeanu
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology-CINSaT, University of Kassel, 34132 Kassel, Germany.
| | | | | |
Collapse
|
26
|
Jiang Y, Rabbi M, Kim M, Ke C, Lee W, Clark RL, Mieczkowski PA, Marszalek PE. UVA generates pyrimidine dimers in DNA directly. Biophys J 2009; 96:1151-8. [PMID: 19186150 DOI: 10.1016/j.bpj.2008.10.030] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022] Open
Abstract
There is increasing evidence that UVA radiation, which makes up approximately 95% of the solar UV light reaching the Earth's surface and is also commonly used for cosmetic purposes, is genotoxic. However, in contrast to UVC and UVB, the mechanisms by which UVA produces various DNA lesions are still unclear. In addition, the relative amounts of various types of UVA lesions and their mutagenic significance are also a subject of debate. Here, we exploit atomic force microscopy (AFM) imaging of individual DNA molecules, alone and in complexes with a suite of DNA repair enzymes and antibodies, to directly quantify UVA damage and reexamine its basic mechanisms at a single-molecule level. By combining the activity of endonuclease IV and T4 endonuclease V on highly purified and UVA-irradiated pUC18 plasmids, we show by direct AFM imaging that UVA produces a significant amount of abasic sites and cyclobutane pyrimidine dimers (CPDs). However, we find that only approximately 60% of the T4 endonuclease V-sensitive sites, which are commonly counted as CPDs, are true CPDs; the other 40% are abasic sites. Most importantly, our results obtained by AFM imaging of highly purified native and synthetic DNA using T4 endonuclease V, photolyase, and anti-CPD antibodies strongly suggest that CPDs are produced by UVA directly. Thus, our observations contradict the predominant view that as-yet-unidentified photosensitizers are required to transfer the energy of UVA to DNA to produce CPDs. Our results may help to resolve the long-standing controversy about the origin of UVA-produced CPDs in DNA.
Collapse
Affiliation(s)
- Yong Jiang
- Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Elsässer T, Brons S, Psonka K, Scholz M, Gudowska-Nowak E, Taucher-Scholz G. Biophysical Modeling of Fragment Length Distributions of DNA Plasmids after X and Heavy-Ion Irradiation Analyzed by Atomic Force Microscopy. Radiat Res 2008; 169:649-59. [PMID: 18494540 DOI: 10.1667/rr1028.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 02/08/2008] [Indexed: 11/03/2022]
Affiliation(s)
- Thilo Elsässer
- Gesellschaft für Schwerionenforschung, Biophysics, Darmstadt, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Ke C, Jiang Y, Mieczkowski PA, Muramoto GG, Chute JP, Marszalek PE. Nanoscale detection of ionizing radiation damage to DNA by atomic force microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:288-294. [PMID: 18247386 DOI: 10.1002/smll.200700527] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The detection and quantification of ionizing radiation damage to DNA at a single-molecule level by atomic force microscopy (AFM) is reported. The DNA damage-detection technique combining supercoiled plasmid relaxation assay with AFM imaging is a direct and quantitative approach to detect gamma-ray-induced single- and double-strand breaks in DNA, and its accuracy and reliability are validated through a comparison with traditional agarose gel electrophoresis. In addition, the dependence of radiation-induced single-strand breaks on plasmid size and concentration at a single-molecule level in a low-dose (1 Gy) and low-concentration range (0.01 ng microL(-1)-10 ng microL(-1)) is investigated using the AFM-based damage-detection assay. The results clearly show that the number of single-strand breaks per DNA molecule is linearly proportional to the plasmid size and inversely correlated to the DNA concentration. This assay can also efficiently detect DNA damage in highly dilute samples (0.01 ng microL(-1)), which is beyond the capability of traditional techniques. AFM imaging can uniquely supplement traditional techniques for sensitive measurements of damage to DNA by ionizing radiation.
Collapse
Affiliation(s)
- Changhong Ke
- Center for Biologically Inspired Materials and Material Systems and Department of Mechanical, Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
29
|
Jiang Y, Ke C, Mieczkowski PA, Marszalek PE. Detecting ultraviolet damage in single DNA molecules by atomic force microscopy. Biophys J 2007; 93:1758-67. [PMID: 17483180 PMCID: PMC1948057 DOI: 10.1529/biophysj.107.108209] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report detection and quantification of ultraviolet (UV) damage in DNA at a single molecule level by atomic force microscopy (AFM). By combining the supercoiled plasmid relaxation assay with AFM imaging, we find that high doses of medium wave ultraviolet (UVB) and short wave ultraviolet (UVC) light not only produce cyclobutane pyrimidine dimers (CPDs) as reported but also cause significant DNA degradation. Specifically, 12.5 kJ/m(2) of UVC and 165 kJ/m(2) of UVB directly relax 95% and 78% of pUC18 supercoiled plasmids, respectively. We also use a novel combination of the supercoiled plasmid assay with T4 Endonuclease V treatment of irradiated plasmids and AFM imaging of their relaxation to detect damage caused by low UVB doses, which on average produced approximately 0.5 CPD per single plasmid. We find that at very low UVB doses, the relationship between the number of CPDs and UVB dose is almost linear, with 4.4 CPDs produced per Mbp per J/m(2) of UVB radiation. We verified these AFM results by agarose gel electrophoresis separation of UV-irradiated and T4 Endonuclease V treated plasmids. Our AFM and gel electrophoresis results are consistent with the previous result obtained using other traditional DNA damage detection methods. We also show that damage detection assay sensitivity increases with plasmid size. In addition, we used photolyase to mark the sites of UV lesions in supercoiled plasmids for detection and quantification by AFM, and these results were found to be consistent with the results obtained by the plasmid relaxation assay. Our results suggest that AFM can supplement traditional methods for high resolution measurements of UV damage to DNA.
Collapse
Affiliation(s)
- Yong Jiang
- Center for Biologically Inspired Materials and Material Systems and Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
30
|
Brezeanu M, Taucher-Scholz G, Psonka K, Träger F, Hubenthal F. SFM studies of carbon ion induced damages in plasmid DNA. J Mol Recognit 2007; 20:502-7. [DOI: 10.1002/jmr.852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|