1
|
de Lima MF, Lisboa MDO, Terceiro LEL, Rangel-Pozzo A, Mai S. Chromosome Territories in Hematological Malignancies. Cells 2022; 11:1368. [PMID: 35456046 PMCID: PMC9028803 DOI: 10.3390/cells11081368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype. The study of CT in hematological diseases revealed chromosome position as an important factor for specific chromosome translocations. In this review, we highlight the history of CT theory, current knowledge on possible clinical applications of CT analysis, and the impact of CT in the development of hematological neoplasia such as multiple myeloma, leukemia, and lymphomas. Accumulating data on nuclear architecture in cancer allow one to propose the three-dimensional nuclear genomic landscape as a novel cancer biomarker for the future.
Collapse
Affiliation(s)
- Matheus Fabiao de Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Brazil;
| | - Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| |
Collapse
|
2
|
Hua LL, Casas C, Mikawa T. Mitotic Antipairing of Homologous Chromosomes. Results Probl Cell Differ 2022; 70:191-220. [PMID: 36348108 PMCID: PMC9731508 DOI: 10.1007/978-3-031-06573-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome organization is highly dynamic and plays an essential role during cell function. It was recently found that pairs of the homologous chromosomes are continuously separated at mitosis and display a haploid (1n) chromosome set, or "antipairing," organization in human cells. Here, we provide an introduction to the current knowledge of homologous antipairing in humans and its implications in human disease.
Collapse
Affiliation(s)
- Lisa L. Hua
- Department of Biology, Sonoma State University, San Francisco
| | - Christian Casas
- Department of Biology, Sonoma State University, San Francisco
| | - Takashi Mikawa
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco,Corresponding author:
| |
Collapse
|
3
|
Fucic A, Druzhinin V, Aghajanyan A, Slijepcevic P, Bakanova M, Baranova E, Minina V, Golovina T, Kourdakov K, Timofeeva A, Titov V. Rogue versus chromothriptic cell as biomarker of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108299. [PMID: 32430100 DOI: 10.1016/j.mrrev.2020.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/30/2022]
Abstract
New molecular cytogenetic biomarkers may significantly contribute to biodosimetry, whose application is still globally diverse and not fully standardized. In 2011, a new term, chromothripsis, was introduced raising great interest among researchers and soon motivating further investigations of the phenomenon. Chromothripsis is described as a single event in which one or more chromosomes go through severe DNA damage very much resembling rogue cells (RC) described more than 50 years ago. In this review, we for the first time compare these two multi-aberrant cells types, RC versus chromothriptic cells, giving insight into the similarities of the mechanisms involved in their etiology. In order to make a better comparison, data on RC in 3366 subjects from studies on cancer patients, Chernobyl liquidators, child victims of the Chernobyl nuclear plant accident, residentially and occupationally exposed population have been summarized for the first time. Results of experimental and epidemiological analysis show that chromothriptic cells and RC may be caused by exposure to high LET ionizing radiation. Experience and knowledge collected on RC may be used in future for further investigations of chromothripsis, introducing a new class of cells which include both chromothriptic and RC, and better insight into the frequency of chromothriptic cell per subject, which is currently absent. Both cell types are relevant in investigations of cancer etiology, biomonitoring of accidentally exposed population to ionizing radiation and biomonitoring of astronauts due to their exposure to high LET ionizing radiation during interplanetary voyages.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Anna Aghajanyan
- Medical Institute Peoples' Friendship University of Russia (RUDN University), Moscow, Russia Federation
| | - Predrag Slijepcevic
- Brunel University London, Department of Life Sciences, College of Health and Life Sciences, Uxbridge, UK
| | | | | | | | | | | | | | - Victor Titov
- Kemerovo Regional Oncology Center, Kemerovo, Russian Federation
| |
Collapse
|
4
|
Lee BH, Wang CKC. A cell-by-cell Monte Carlo simulation for assessing radiation-induced DNA double strand breaks. Phys Med 2019; 62:140-151. [DOI: 10.1016/j.ejmp.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/08/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022] Open
|
5
|
Balajee AS, Sanders JT, Golloshi R, Shuryak I, McCord RP, Dainiak N. Investigation of Spatial Organization of Chromosome Territories in Chromosome Exchange Aberrations After Ionizing Radiation Exposure. HEALTH PHYSICS 2018; 115:77-89. [PMID: 29787433 DOI: 10.1097/hp.0000000000000840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Higher-order organization of the human genome is well established with chromosomes occupying distinct domains or territories in the interphase nucleus. Spatial organization of chromosome territories in the interphase nucleus occurs in a cell-type-specific manner. Since both stable and unstable aberrations induced by ionizing radiation involve the exchange of material between two or more chromosomes, this study investigated the role of spatial organization of chromosome domains in ionizing-radiation-induced chromosome translocation events. Using multicolor fluorescence in situ hybridization, the study characterized the positioning of each human chromosome relative to its neighborhood territories in the interphase nucleus of lymphocytes and B-lymphoblastoid cells before ionizing radiation and compared this interphase positioning with the spectrum of exchanges observed after ionizing radiation in the metaphase chromosomes. In addition to multicolor fluorescence in situ hybridization, the genome-wide chromosome conformation capture technique (Hi-C) was also performed in mock and x-ray-irradiated human B-lymphoblastoid and fibroblast cells to characterize the interactions among chromosomes and to assess the genome reorganization changes, if any, after ionizing radiation exposure. On average, 35-50% of the total translocations induced by x rays and neutrons correlated with proximity of chromosome territories detected by multicolor fluorescence in situ hybridization in both lymphocytes and lymphoblastoid cells. The translocation rate observed in proximally positioned chromosome territories was consistently higher than distally located territories and was found to be statistically significant (p = 0.01) in human lymphoblastoid cells after x rays. The interchromosome interaction frequencies detected by Hi-C correlate fairly well with ionizing-radiation-induced translocations detected by multicolor fluorescence in situ hybridization, suggesting the importance of chromosome proximity effects in ionizing-radiation-induced chromosomal translocation events.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| | - Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Igor Shuryak
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Nicholas Dainiak
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| |
Collapse
|
6
|
Nakamura N. Why Genetic Effects of Radiation are Observed in Mice but not in Humans. Radiat Res 2017; 189:117-127. [PMID: 29261411 DOI: 10.1667/rr14947.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic effects from radiation have been observed in a number of species to date. However, observations in humans are nearly nonexistent. In this review, possible reasons for the paucity of positive observations in humans are discussed. Briefly, it appears likely that radiation sensitivity for the induction of mutations varies among different genes, and that the specific genes that were used in the past with the specific locus test utilizing millions of mice may have simply been very responsive to radiation. In support of this notion, recent studies targeting the whole genome to detect copy number variations (deletions and duplications) in offspring derived from irradiated spermatogonia indicated that the mutation induction rate per genome is surprisingly lower than what would have been expected from previous results with specific locus tests, even in the mouse. This finding leads us to speculate that the lack of evidence for the induction of germline mutations in humans is not due to any kind of species differences between humans and mice, but rather to the lack of highly responsive genes in humans, which could be used for effective mutation screening purposes. Examples of such responsive genes are the mouse coat color genes, but in human studies many more genes with higher response rates are required because the number of offspring examined and the radiation doses received are smaller than in mouse studies. Unfortunately, such genes have not yet been found in humans. These results suggest that radiation probably induces germline mutations in humans but that the mutation induction rate is likely to be much lower than has been estimated from past specific locus studies in mice. Whole genome sequencing studies will likely shed light on this point in the near future.
Collapse
Affiliation(s)
- Nori Nakamura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815 Japan
| |
Collapse
|
7
|
Balajee AS, Bertucci A, Taveras M, Brenner DJ. Multicolour FISH analysis of ionising radiation induced micronucleus formation in human lymphocytes. Mutagenesis 2014; 29:447-55. [PMID: 25217771 DOI: 10.1093/mutage/geu041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Micronucleation of chromosomal DNA is an effective indicator of DNA damage and micronucleus (MN) analysis is a valuable tool for radiation biodosimetry studies. To gain a comprehensive knowledge of micronucleation process after ionising radiation (IR) exposure, whole genome-wide chromosome analysis is desirable. With this objective, multicolour fluorescence in situ hybridization (M-FISH) technique was utilised in the present study to characterise the chromosome content of spontaneous and IR-induced micronuclei in three human donors. M-FISH analysis revealed a radiation dose-dependant increase in the number of micronuclei with multi-chromosome material above 2 Gy and as many as 3-6 multicolour signals were detected in micronuclei after high γ-rays radiation doses (5-10 Gy). Involvement of each human chromosome material was more frequently detected in multicoloured micronuclei than in single-coloured micronuclei at high radiation doses (>2 Gy). Observation of dose-dependant increase in the MN frequency with multi-chromosome material may be due to misrepair of DNA double-strand breaks involving multiple chromosomes leading to asymmetric dicentric or ring chromosomes and acentric fragments. Chromosomes belonging to groups A (1, 2 and 3) and B (4 and 5) were frequently detected in 35-45% of the total micronuclei either as single entities or in combination with other chromosomes. Among the A and B groups, chromosome 1 material was consistently detected at high MN frequencies after radiation exposure in all the donors. Additionally, chromosomes 13 and 19 were more frequently observed in micronuclei than the expected frequency based on DNA content. Our whole genome approach utilising the M-FISH technique revealed that MN formation at high radiation doses might be complex involving multiple chromosome fragments. Understanding the fate and biological consequences of these multi-chromosome-containing micronuclei may provide key molecular insights for some aspects of IR-induced genomic instability and cancer development processes.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University Medical Center, 168th Street, 630 West, New York, NY 10032, USA.
| | - Antonella Bertucci
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University Medical Center, 168th Street, 630 West, New York, NY 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University Medical Center, 168th Street, 630 West, New York, NY 10032, USA
| | - David J Brenner
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University Medical Center, 168th Street, 630 West, New York, NY 10032, USA
| |
Collapse
|
8
|
Foster HA, Estrada-Girona G, Themis M, Garimberti E, Hill MA, Bridger JM, Anderson RM. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells. Mutat Res 2013; 756:66-77. [PMID: 23791770 DOI: 10.1016/j.mrgentox.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023]
Abstract
It is well established that chromosomes exist in discrete territories (CTs) in interphase and are positioned in a cell-type specific probabilistic manner. The relative localisation of individual CTs within cell nuclei remains poorly understood, yet many cancers are associated with specific chromosome rearrangements and there is good evidence that relative territorial position influences their frequency of exchange. To examine this further, we characterised the complexity of radiation-induced chromosome exchanges in normal human bronchial epithelial (NHBE) cells by M-FISH analysis of PCC spreads and correlated the exchanges induced with their preferred interphase position, as determined by 1/2-colour 2D-FISH analysis, at the time of irradiation. We found that the frequency and complexity of aberrations induced were reduced in ellipsoid NHBE cells in comparison to previous observations in spherical cells, consistent with aberration complexity being dependent upon the number and proximity of damaged CTs, i.e. lesion proximity. To ask if particular chromosome neighbourhoods could be identified we analysed all radiation-induced pair-wise exchanges using SCHIP (statistics for chromosome interphase positioning) and found that exchanges between chromosomes (1;13), (9;17), (9;18), (12;18) and (16;21) all occurred more often than expected assuming randomness. All of these pairs were also found to be either sharing similar preferred positions in interphase and/or sharing neighbouring territory boundaries. We also analysed a human small cell lung cancer cell line, DMS53, by M-FISH observing the genome to be highly rearranged, yet possessing rearrangements also involving chromosomes (1;13) and (9;17). Our findings show evidence for the occurrence of non-random exchanges that may reflect the territorial organisation of chromosomes in interphase at time of damage and highlight the importance of cellular geometry for the induction of aberrations of varying complexity after exposure to both low and high-LET radiation.
Collapse
Affiliation(s)
- Helen A Foster
- Centre for Cell and Chromosome Biology, Division of Biosciences, Brunel University, West London UB8 3PH, UK; Centre for Infection, Immunity and Disease Mechanisms, Division of Biosciences, Brunel University, West London UB8 3PH, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Schwarz-Finsterle J, Scherthan H, Huna A, González P, Mueller P, Schmitt E, Erenpreisa J, Hausmann M. Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells. Mutat Res 2013; 756:56-65. [PMID: 23685102 DOI: 10.1016/j.mrgentox.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022]
Abstract
The exposure of tumour cells to high doses of ionizing radiation can induce endopolyploidization as an escape route from cell death. This strategy generally results in mitotic catastrophe during the first few days after irradiation. However, some cells escape mitotic catastrophe, polyploidize and attempt to undergo genome reduction and de-polyploidization in order to create new, viable para-diploid tumour cell sub-clones. In search for the consequences of ionizing radiation induced endopolyploidization, genome and chromosome architecture in nuclei of polyploid tumour cells, and sub-nuclei after division of bi- or multi-nucleated cells were investigated during 7 days following irradiation. Polyploidization was induced in p53-function deficient HeLa cells by exposure to 10Gy of X-irradiation. Chromosome territories #1, #4, #12 and centromeres of chromosomes #6, #10, #X were labelled by FISH and analysed for chromosome numbers, volumes and spatial distribution during 7 days post irradiation. The numbers of interphase chromosome territories or centromeres, respectively, the positions of the most peripherally and centrally located chromosome territories, and the territory volumes were compared to non-irradiated controls over this time course. Nuclei with three copies of several chromosomes (#1, #6, #10, #12, #X) were found in the irradiated as well as non-irradiated specimens. From day 2 to day 5 post irradiation, chromosome territories (#1, #4, #12) shifted towards the nuclear periphery and their volumes increased 16- to 25-fold. Consequently, chromosome territories returned towards the nuclear centre during day 6 and 7 post irradiation. In comparison to non-irradiated cells (∼500μm(3)), the nuclear volume of irradiated cells was increased 8-fold (to ∼4000μm(3)) at day 7 post irradiation. Additionally, smaller cell nuclei with an average volume of about ∼255μm(3) were detected on day 7. The data suggest a radiation-induced generation of large intra-nuclear chromosome territories and their repositioning prior to genome reduction.
Collapse
Affiliation(s)
- Jutta Schwarz-Finsterle
- Kirchhoff-Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Heride C, Ricoul M, Kiêu K, von Hase J, Guillemot V, Cremer C, Dubrana K, Sabatier L. Distance between homologous chromosomes results from chromosome positioning constraints. J Cell Sci 2010; 123:4063-75. [DOI: 10.1242/jcs.066498] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organization of chromosomes is important for various biological processes and is involved in the formation of rearrangements often observed in cancer. In mammals, chromosomes are organized in territories that are radially positioned in the nucleus. However, it remains unclear whether chromosomes are organized relative to each other. Here, we examine the nuclear arrangement of 10 chromosomes in human epithelial cancer cells by three-dimensional FISH analysis. We show that their radial position correlates with the ratio of their gene density to chromosome size. We also observe that inter-homologue distances are generally larger than inter-heterologue distances. Using numerical simulations taking radial position constraints into account, we demonstrate that, for some chromosomes, radial position is enough to justify the inter-homologue distance, whereas for others additional constraints are involved. Among these constraints, we propose that nucleolar organizer regions participate in the internal positioning of the acrocentric chromosome HSA21, possibly through interactions with nucleoli. Maintaining distance between homologous chromosomes in human cells could participate in regulating genome stability and gene expression, both mechanisms that are key players in tumorigenesis.
Collapse
Affiliation(s)
- Claire Heride
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Michelle Ricoul
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Kien Kiêu
- UR 341 Mathématiques et Informatique Appliquées, INRA, 78 350 Jouy-en-Josas, France
| | - Johann von Hase
- Kirchhoff Institute for Physics, University of Heidelberg, 69 120 Heidelberg, Germany
| | - Vincent Guillemot
- Laboratoire d'Exploration Fonctionnelle des Génomes (LEFG), Commissariat à l'Energie Atomique, 91 057 Evry, France
| | - Christoph Cremer
- Kirchhoff Institute for Physics, University of Heidelberg, 69 120 Heidelberg, Germany
| | - Karine Dubrana
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| |
Collapse
|
11
|
|
12
|
Ronneberger O, Baddeley D, Scheipl F, Verveer PJ, Burkhardt H, Cremer C, Fahrmeir L, Cremer T, Joffe B. Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Res 2008; 16:523-62. [PMID: 18461488 DOI: 10.1007/s10577-008-1236-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The vast majority of microscopic data in biology of the cell nucleus is currently collected using fluorescence microscopy, and most of these data are subsequently subjected to quantitative analysis. The analysis process unites a number of steps, from image acquisition to statistics, and at each of these steps decisions must be made that may crucially affect the conclusions of the whole study. This often presents a really serious problem because the researcher is typically a biologist, while the decisions to be taken require expertise in the fields of physics, computer image analysis, and statistics. The researcher has to choose between multiple options for data collection, numerous programs for preprocessing and processing of images, and a number of statistical approaches. Written for biologists, this article discusses some of the typical problems and errors that should be avoided. The article was prepared by a team uniting expertise in biology, microscopy, image analysis, and statistics. It considers the options a researcher has at the stages of data acquisition (choice of the microscope and acquisition settings), preprocessing (filtering, intensity normalization, deconvolution), image processing (radial distribution, clustering, co-localization, shape and orientation of objects), and statistical analysis.
Collapse
Affiliation(s)
- O Ronneberger
- Department of Pattern Recognition and Image Processing, University of Freiburg, 79110, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|