1
|
Yang Y, Wang B, Li X. Pyruvate Carboxylase as a Moonlighting Metabolic Enzyme Protects β-Cell From Senescence. J Diabetes 2025; 17:e70050. [PMID: 39948025 PMCID: PMC11825218 DOI: 10.1111/1753-0407.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025] Open
Affiliation(s)
- Yumei Yang
- Department of Endocrinology and Metabolism, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Baomin Wang
- Department of Endocrinology and Metabolism, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Yang Y, Wang B, Dong H, Lin H, Yuen-man Ho M, Hu K, Zhang N, Ma J, Xie R, Cheng KKY, Li X. The mitochondrial enzyme pyruvate carboxylase restricts pancreatic β-cell senescence by blocking p53 activation. Proc Natl Acad Sci U S A 2024; 121:e2401218121. [PMID: 39436667 PMCID: PMC11536080 DOI: 10.1073/pnas.2401218121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Defective glucose-stimulated insulin secretion (GSIS) and β-cell senescence are hallmarks in diabetes. The mitochondrial enzyme pyruvate carboxylase (PC) has been shown to promote GSIS and β-cell proliferation in the clonal β-cell lines, yet its physiological relevance remains unknown. Here, we provide animal and human data showing a role of PC in protecting β-cells against senescence and maintaining GSIS under different physiological and pathological conditions. β-cell-specific deletion of PC impaired GSIS and induced β-cell senescence in the mouse models under either a standard chow diet or prolonged high-fat diet feeding. Transcriptomic analysis indicated that p53-related senescence and cell cycle arrest are activated in PC-deficient islets. Overexpression of PC inhibited hyperglycemia- and aging-induced p53-related senescence in human and mouse islets as well as INS-1E β-cells, whereas knockdown of PC provoked senescence. Mechanistically, PC interacted with MDM2 to prevent its degradation via the MDM2 binding motif, which in turn restricts the p53-dependent senescent program in β-cells. On the contrary, the regulatory effects of PC on GSIS and the tricarboxylic acid (TCA) anaplerotic flux are p53-independent. We illuminate a function of PC in controlling β-cell senescence through the MDM2-p53 axis.
Collapse
Affiliation(s)
- Yumei Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200030, China
| | - Baomin Wang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200030, China
| | - Haoru Dong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200030, China
| | - Huige Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518000, China
| | - Melody Yuen-man Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong999077, China
| | - Ke Hu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200030, China
| | - Na Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200030, China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200030, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai200030, China
| | - Kenneth King-yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518000, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200030, China
| |
Collapse
|
3
|
Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med 2024; 7:297-309. [PMID: 38837635 PMCID: PMC11228097 DOI: 10.1002/ame2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.
Collapse
Affiliation(s)
- Yasodha Krishna Janapati
- School of Pharmacy & Health SciencesUnited States International University‐AFRICA (USIU‐A)NairobiKenya
| | - Sunil Junapudi
- Department of Pharmaceutical ChemistryGeethanjali College of PharmacyKeesaraIndia
| |
Collapse
|
4
|
Animal models and natural products to investigate in vivo and in vitro antidiabetic activity. Biomed Pharmacother 2018; 101:833-841. [DOI: 10.1016/j.biopha.2018.02.137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/17/2022] Open
|
5
|
Borck PC, Vettorazzi JF, Branco RCS, Batista TM, Santos-Silva JC, Nakanishi VY, Boschero AC, Ribeiro RA, Carneiro EM. Taurine supplementation induces long-term beneficial effects on glucose homeostasis in ob/ob mice. Amino Acids 2018; 50:765-774. [DOI: 10.1007/s00726-018-2553-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
|
6
|
Branco RCS, Camargo RL, Batista TM, Vettorazzi JF, Borck PC, Dos Santos-Silva JCR, Boschero AC, Zoppi CC, Carneiro EM. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. FASEB J 2017; 31:4078-4087. [PMID: 28572444 DOI: 10.1096/fj.201600326rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/15/2017] [Indexed: 12/23/2022]
Abstract
Taurine (Tau) restores β-cell function in obesity; however, its action is lost in malnourished obese rodents. Here, we investigated the mechanisms involved in the lack of effects of Tau in this model. C57BL/6 mice were fed a control diet (CD) (14% protein) or a protein-restricted diet (RD) (6% protein) for 6 wk. Afterward, mice received a high-fat diet (HFD) for 8 wk [CD + HFD (CH) and RD + HFD (RH)] with or without 5% Tau supplementation after weaning on their drinking water [CH + Tau (CHT) and RH + Tau (RHT)]. The HFD increased insulin secretion through mitochondrial metabolism in CH and RH. Tau prevented all those alterations in CHT only. The expression of the taurine transporter (Tau-T), as well as Tau content in pancreatic islets, was increased in CH but had no effect on RH. Protein malnutrition programs β cells and impairs Tau-induced restoration of mitochondrial metabolism and biogenesis. This may be associated with modulation of the expression of Tau-T in pancreatic islets, which may be responsible for the absence of effect of Tau in protein-malnourished obese mice.-Branco, R. C. S., Camargo, R. L., Batista, T. M., Vettorazzi, J. F., Borck, P. C., dos Santos-Silva, J. C. R., Boschero, A. C., Zoppi, C. C., Carneiro, E. M. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion.
Collapse
Affiliation(s)
- Renato Chaves Souto Branco
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Ludemann Camargo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thiago Martins Batista
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Patrícia Cristine Borck
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cláudio Cesar Zoppi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Oh YS. Mechanistic insights into pancreatic beta-cell mass regulation by glucose and free fatty acids. Anat Cell Biol 2015; 48:16-24. [PMID: 25806118 PMCID: PMC4371177 DOI: 10.5115/acb.2015.48.1.16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/04/2015] [Indexed: 01/14/2023] Open
Abstract
Pancreatic islets are responsible for blood glucose homeostasis. Reduced numbers of functional (insulin-secreting) beta-cells in pancreatic islets underlies diabetes. Restoration of the secretion of the proper amount of insulin is a goal. Beta-cell mass is increased by neogenesis, proliferation and cell hypertrophy, and is decreased by beta-cell death primarily through apoptosis. Many hormones and nutrients affect beta-cell mass, and glucose and free fatty acid are thought to be the most important determinants of beta-cell equilibrium. A number of molecular pathways have been implicated in beta-cell mass regulation and have been studied. This review will focus on the role of the principle metabolites, glucose and free fatty acid, and the downstream signaling pathways regulating beta-cell mass by these metabolites.
Collapse
Affiliation(s)
- Yoon Sin Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea. ; Gachon Medical Research Institute, Gil Hospital, Incheon, Korea
| |
Collapse
|
8
|
Huang CY, Chen WM, Tsay YG, Hsieh SC, Lin Y, Lee WJ, Sheu WHH, Chiang AN. Differential regulation of protein expression in response to polyunsaturated fatty acids in the liver of apoE-knockout mice and in HepG2 cells. J Biomed Sci 2015; 22:12. [PMID: 25881314 PMCID: PMC4331445 DOI: 10.1186/s12929-015-0118-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/26/2015] [Indexed: 12/29/2022] Open
Abstract
Background Polyunsaturated fatty acids (PUFAs) are nutrients necessary for life. The liver is the essential metabolic center, which aids in maintaining health via diverse biological actions. In the present work, a proteomics study was conducted with an aim to provide new insights into PUFA-regulated hepatic protein expression in apoE-knockout mice. Additionally, we investigated how n-3 PUFAs influence cytokine-challenge by using HepG2 cells as a model. Results Through the proteomic analysis using 2-dimensional electrophoresis and mass spectrometry, we found that 28, 23, 14, and 28 hepatic proteins were up-regulated at least a two-fold difference in intensity compared with the control group in mice treated with the docosahexaenoic acid, eicosapentaenoic acid, arachidonic acid, and linoleic acid, respectively. In contrast, 12 hepatic proteins were down-regulated with a ratio value of less than 0.5 compared to their control counterparts by these four fatty acids. All of the altered proteins were then sorted according to their biochemical properties related to metabolism, redox stress/inflammation, enzymatic reactions, and miscellaneous functions. The results provide evidence that PUFAs may act as either pro-inflammatory or anti-inflammatory agents. Cytokine-challenged HepG2 cells were used to reveal the anti-inflammatory function of n-3 PUFAs. The results showed that interleukin (IL)-1β combined with IL-6 induced C-reactive protein (CRP) mRNA expression and its protein secretion by HepG2 cells. The CRP promoter activity was significantly increased in the IL-6-treated cells, whereas IL-1β alone had no effect. However, IL-1β and IL-6 acted synergistically to further enhance CRP promoter activities. Furthermore, n-3 PUFAs inhibited nuclear factor-κB (NF-κB) activation and the phosphorylation of the nuclear signal transducer and activator of transcription 3 (STAT3) during cytokine-induced CRP production. Conclusion This study indicates that PUFAs induced changes in the hepatic protein profile in vivo. Furthermore, n-3 PUFAs exert their anti-inflammatory properties through differential molecular mechanisms in hepatic cells. These results provide novel information regarding the roles of PUFAs in the liver at the tissue and cellular levels.
Collapse
Affiliation(s)
- Chun-Ying Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Taipei, 11221, Taiwan.
| | - Wei-Ming Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, 61363, Taiwan. .,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Taipei, 11221, Taiwan.
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Yun Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Taipei, 11221, Taiwan.
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40354, Taiwan.
| | - Wayne Huey-Herng Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40354, Taiwan.
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Taipei, 11221, Taiwan.
| |
Collapse
|
9
|
Lietzan AD, Lin Y, St Maurice M. The role of biotin and oxamate in the carboxyltransferase reaction of pyruvate carboxylase. Arch Biochem Biophys 2014; 562:70-9. [PMID: 25157442 PMCID: PMC4197081 DOI: 10.1016/j.abb.2014.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 01/15/2023]
Abstract
Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. During catalysis, carboxybiotin is translocated to the carboxyltransferase domain where the carboxyl group is transferred to the acceptor substrate, pyruvate. Many studies on the carboxyltransferase domain of PC have demonstrated an enhanced oxaloacetate decarboxylation activity in the presence of oxamate and it has been shown that oxamate accepts a carboxyl group from carboxybiotin during oxaloacetate decarboxylation. The X-ray crystal structure of the carboxyltransferase domain from Rhizobium etli PC reveals that oxamate is positioned in the active site in an identical manner to the substrate, pyruvate, and kinetic data are consistent with the oxamate-stimulated decarboxylation of oxaloacetate proceeding through a simple ping-pong bi bi mechanism in the absence of the biotin carboxylase domain. Additionally, analysis of truncated PC enzymes indicates that the BCCP domain devoid of biotin does not contribute directly to the enzymatic reaction and conclusively demonstrates a biotin-independent oxaloacetate decarboxylation activity in PC. These findings advance the description of catalysis in PC and can be extended to the study of related biotin-dependent enzymes.
Collapse
Affiliation(s)
- Adam D Lietzan
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Yi Lin
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.
| |
Collapse
|
10
|
Sheng X, Liu Y. QM/MM Study of the Reaction Mechanism of the Carboxyl Transferase Domain of Pyruvate Carboxylase from Staphylococcus aureus. Biochemistry 2014; 53:4455-66. [DOI: 10.1021/bi500020r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang Sheng
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Northwest
Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| |
Collapse
|
11
|
Liang X, Martyniuk CJ, Cheng G, Zha J, Wang Z. Pyruvate carboxylase as a sensitive protein biomarker for exogenous steroid chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 189:184-193. [PMID: 24681510 DOI: 10.1016/j.envpol.2014.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Assessing protein responses to endocrine disrupting chemicals is critical for understanding the mechanisms of chemical action and for the assessment of hazards. In this study, the response of the liver proteome of male rare minnows (Gobiocypris rarus) treated with 17β-estradiol (E2) and females treated with 17α-methyltestosterone (MT) were analyzed. A total of 23 and 24 proteins were identified with differential expression in response to E2 and MT, respectively. Pyruvate carboxylase (PC) was the only common differentially expressed protein in both males and females after E2- and MT-treatments. The mRNA as well as the protein levels of PC were significantly down-regulated compared with that of the controls (p < 0.05). Our results suggest that endocrine disruptors interfere with genes and proteins of the TCA cycle and PC may be a sensitive biomarker of exposure to exogenous steroid chemicals in the liver of fish.
Collapse
Affiliation(s)
- Xuefang Liang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Christopher J Martyniuk
- Canadian Rivers Institute, Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Gang Cheng
- Key Lab for Biotechnology of National Commission for Nationalities, College of Life Science, South Central University for Nationalities, Wuhan 430074, China
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| |
Collapse
|
12
|
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2013; 71:2577-604. [PMID: 24363178 PMCID: PMC4059968 DOI: 10.1007/s00018-013-1539-2] [Citation(s) in RCA: 613] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Research Center, and François M. Abboud Cardiovascular Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd, 4-403 BSB, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
13
|
Abstract
The pancreatic islet β cell senses circulating levels of calorigenic nutrients to secrete insulin according to the needs of the organism. Altered insulin secretion is linked to various disorders such as diabetes, hypoglycemic states, and cardiometabolic diseases. Fuel stimuli, including glucose, free fatty acids, and amino acids, promote insulin granule exocytosis primarily via their metabolism in β cells and the production of key signaling metabolites. This paper reviews our current knowledge of the pathways involved in both positive and negative metabolic signaling for insulin secretion and assesses the role of established and candidate metabolic coupling factors, keeping recent developments in focus.
Collapse
Affiliation(s)
- Marc Prentki
- Molecular Nutrition Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, QC, Canada.
| | | | | |
Collapse
|
14
|
Somesh BP, Verma MK, Sadasivuni MK, Mammen-Oommen A, Biswas S, Shilpa PC, Reddy AK, Yateesh AN, Pallavi PM, Nethra S, Smitha R, Neelima K, Narayanan U, Jagannath MR. Chronic glucolipotoxic conditions in pancreatic islets impair insulin secretion due to dysregulated calcium dynamics, glucose responsiveness and mitochondrial activity. BMC Cell Biol 2013; 14:31. [PMID: 23815372 PMCID: PMC3704974 DOI: 10.1186/1471-2121-14-31] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 06/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background In the progression towards diabetes, glucolipotoxicity is one of the main causes of pancreatic beta cell pathology. The aim of this study was to examine the in vitro effects of chronic glucolipotoxic conditions on cellular responses in pancreatic islets, including glucose and fat metabolism, Calcium mobilization, insulin secretion and insulin content. Results Exposure of islets to chronic glucolipotoxic conditions decreased glucose stimulated insulin secretion in vitro. Reduced protein levels of Glut2/slc2a2, and decreased glucokinase and pyruvate carboxylase mRNA levels indicated a significant lowering in glucose sensing. Concomitantly, both fatty acid uptake and triglyceride accumulation increased significantly while fatty acid oxidation decreased. This general suppression in glucose metabolism correlated well with a decrease in mitochondrial number and activity, reduction in cellular ATP content and dampening of the TCA cycle. Further, we also observed a decrease in IP3 levels and lower Calcium mobilization in response to glucose. Importantly, chronic glucolipotoxic conditions in vitro decreased insulin gene expression, insulin content, insulin granule docking (to the plasma membrane) and insulin secretion. Conclusions Our results present an integrated view of the effects of chronic glucolipotoxic conditions on known and novel signaling events, in vitro, that results in reduced glucose responsiveness and insulin secretion.
Collapse
Affiliation(s)
- Baggavalli P Somesh
- Connexios Life Sciences Pvt Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore 560 078, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lietzan AD, St Maurice M. A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase. J Biol Chem 2013; 288:19915-25. [PMID: 23698000 DOI: 10.1074/jbc.m113.477828] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp(590) and Tyr(628) and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.
Collapse
Affiliation(s)
- Adam D Lietzan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, USA
| | | |
Collapse
|
16
|
Animal models as tools to investigate antidiabetic and anti-inflammatory plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:142087. [PMID: 22899950 PMCID: PMC3414199 DOI: 10.1155/2012/142087] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/30/2012] [Indexed: 01/12/2023]
Abstract
Plants have been historically used for diabetes treatment and related anti-inflammatory activity throughout the world; few of them have been validated by scientific criteria. Recently, a large diversity of animal models has been developed for better understanding the pathogenesis of diabetes mellitus and its underlying inflammatory mechanism and new drugs have been introduced in the market to treat this disease. The aim of this work is to review the available animal models of diabetes and anti-inflammatory activity along with some in vitro models which have been used as tools to investigate the mechanism of action of drugs with potential antidiabetic properties and related anti-inflammatory mechanism. At present, the rigorous procedures for evaluation of conventional antidiabetic medicines have rarely been applied to test raw plant materials used as traditional treatments for diabetes; and natural products, mainly derived from plants, have been tested in chemically induced diabetes model. This paper contributes to design new strategies for the development of novel antidiabetic drugs and its related inflammatory activity in order to treat this serious condition which represents a global public health problem.
Collapse
|
17
|
Effects of biotin supplementation in the diet on insulin secretion, islet gene expression, glucose homeostasis and beta-cell proportion. J Nutr Biochem 2012; 24:169-77. [PMID: 22841397 DOI: 10.1016/j.jnutbio.2012.03.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 03/24/2012] [Accepted: 03/28/2012] [Indexed: 12/14/2022]
Abstract
Besides its role as a carboxylase cofactor, biotin has a wide repertoire of effects on gene expression, development and metabolism. Pharmacological concentrations of biotin enhance insulin secretion and the expression of genes and signaling pathways that favor islet function in vitro. However, the in vivo effects of biotin supplementation on pancreatic islet function are largely unknown. In the present study, we investigated whether in vivo biotin supplementation in the diet has positive effects in rodent pancreatic islets. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet over 8 weeks postweaning and tested for glucose homeostasis, insulin secretion, islet gene expression and pancreatic morphometry. Insulin secretion increased from the islets of biotin-supplemented mice, together with the messenger RNA (mRNA) expression of several transcription factors regulating insulin expression and secretion, including forkhead box A2, pancreatic and duodenal homeobox 1 and hepatocyte nuclear factor 4α. The mRNA abundance of glucokinase, Cacna1d, acetyl-CoA carboxylase, and insulin also increased. Consistent with these effects, glucose tolerance improved, and glucose-stimulated serum insulin levels increased in biotin-supplemented mice, without changes in fasting glucose levels or insulin tolerance. Biotin supplementation augmented the proportion of beta cells by enlarging islet size and, unexpectedly, also increased the percentage of islets with alpha cells at the islet core. mRNA expression of neural cell adhesion molecule 1, an adhesion protein participating in the maintenance of islet architecture, decreased in biotin-supplemented islets. These findings provide, for the first time, insight into how biotin supplementation exerts its effects on function and proportion of beta cells, suggesting a role for biotin in the prevention and treatment of diabetes.
Collapse
|
18
|
Lietzan AD, Menefee AL, Zeczycki TN, Kumar S, Attwood PV, Wallace JC, Cleland WW, St Maurice M. Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli. Biochemistry 2011; 50:9708-23. [PMID: 21958016 DOI: 10.1021/bi201277j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family.
Collapse
Affiliation(s)
- Adam D Lietzan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Larrieta E, Vega-Monroy MLLDL, Vital P, Aguilera A, German MS, Hafidi ME, Fernandez-Mejia C. Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. J Nutr Biochem 2011; 23:392-9. [PMID: 21596550 DOI: 10.1016/j.jnutbio.2011.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 09/04/2010] [Accepted: 01/06/2011] [Indexed: 11/24/2022]
Abstract
Several studies have revealed that physiological concentrations of biotin are required for the normal expression of critical carbohydrate metabolism genes and for glucose homeostasis. However, the different experimental models used in these studies make it difficult to integrate the effects of biotin deficiency on glucose metabolism. To further investigate the effects of biotin deficiency on glucose metabolism, we presently analyzed the effect of biotin deprivation on glucose homeostasis and on pancreatic islet morphology. Three-week-old male BALB/cAnN Hsd mice were fed a biotin-deficient or a biotin-control diet (0 or 7.2 μmol of free biotin/kg diet, respectively) over a period of 8 weeks. We found that biotin deprivation caused reduced concentrations of blood glucose and serum insulin concentrations, but increased plasma glucagon levels. Biotin-deficient mice also presented impaired glucose and insulin tolerance tests, indicating defects in insulin sensitivity. Altered insulin signaling was linked to a decrease in phosphorylated Akt/PKB but induced no change in insulin receptor abundance. Islet morphology studies revealed disruption of islet architecture due to biotin deficiency, and an increase in the number of α-cells in the islet core. Morphometric analyses found increased islet size, number of islets and glucagon-positive area, but a decreased insulin-positive area, in the biotin-deficient group. Glucagon secretion and gene expression increased in islets isolated from biotin-deficient mice. Our results suggest that biotin deficiency promotes hyperglycemic mechanisms such as increased glucagon concentration and decreased insulin secretion and sensitivity to compensate for reduced blood glucose concentrations. Variations in glucose homeostasis may participate in the changes observed in pancreatic islets.
Collapse
Affiliation(s)
- Elena Larrieta
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Mexico
| | | | | | | | | | | | | |
Collapse
|
20
|
Choi SE, Lee YJ, Hwang GS, Chung JH, Lee SJ, Lee JH, Han SJ, Kim HJ, Lee KW, Kim Y, Jun HS, Kang Y. Supplement of TCA cycle intermediates protects against high glucose/palmitate-induced INS-1 beta cell death. Arch Biochem Biophys 2010; 505:231-41. [PMID: 20965146 DOI: 10.1016/j.abb.2010.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/22/2023]
Abstract
The aim of this study is to investigate the effect of mitochondrial metabolism on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death. Long-term treatment of INS-1 cells with HG/PA impaired energy-producing metabolism accompanying with depletion of TCA cycle intermediates. Whereas an inhibitor of carnitine palmitoyl transferase 1 augmented HG/PA-induced INS-1 cell death, stimulators of fatty acid oxidation protected the cells against the HG/PA-induced death. Furthermore, whereas mitochondrial pyruvate carboxylase inhibitor phenylacetic acid augmented HG/PA-induced INS-1 cell death, supplementation of TCA cycle metabolites including leucine/glutamine, methyl succinate/α-ketoisocaproic acid, dimethyl malate, and valeric acid or treatment with a glutamate dehydrogenase activator, aminobicyclo-heptane-2-carboxylic acid (BCH), significantly protected the cells against the HG/PA-induced death. In particular, the mitochondrial tricarboxylate carrier inhibitor, benzene tricarboxylate (BTA), also showed a strong protective effect on the HG/PA-induced INS-1 cell death. Knockdown of glutamate dehydrogenase or tricarboxylate carrier augmented or reduced the HG/PA-induced INS-1 cell death, respectively. Both BCH and BTA restored HG/PA-induced reduction of energy metabolism as well as depletion of TCA intermediates. These data suggest that depletion of the TCA cycle intermediate pool and impaired energy-producing metabolism may play a role in HG/PA-induced cytotoxicity to beta cells and thus, HG/PA-induced beta cell glucolipotoxicity can be protected by nutritional or pharmacological maneuver enhancing anaplerosis or reducing cataplerosis.
Collapse
Affiliation(s)
- Sung-E Choi
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|