1
|
Gautier EF, Ducamp S, Leduc M, Salnot V, Guillonneau F, Dussiot M, Hale J, Giarratana MC, Raimbault A, Douay L, Lacombe C, Mohandas N, Verdier F, Zermati Y, Mayeux P. Comprehensive Proteomic Analysis of Human Erythropoiesis. Cell Rep 2016; 16:1470-1484. [PMID: 27452463 PMCID: PMC5274717 DOI: 10.1016/j.celrep.2016.06.085] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/16/2016] [Accepted: 06/22/2016] [Indexed: 01/13/2023] Open
Abstract
Mass spectrometry-based proteomics now enables the absolute quantification of thousands of proteins in individual cell types. We used this technology to analyze the dynamic proteome changes occurring during human erythropoiesis. We quantified the absolute expression of 6,130 proteins during erythroid differentiation from late burst-forming units-erythroid (BFU-Es) to orthochromatic erythroblasts. A modest correlation between mRNA and protein expression was observed. We identified several proteins with unexpected expression patterns in erythroid cells, highlighting a breakpoint in the erythroid differentiation process at the basophilic stage. We also quantified the distribution of proteins between reticulocytes and pyrenocytes after enucleation. These analyses identified proteins that are actively sorted either with the reticulocyte or the pyrenocyte. Our study provides the absolute quantification of protein expression during a complex cellular differentiation process in humans, and it establishes a framework for future studies of disordered erythropoiesis.
Collapse
Affiliation(s)
- Emilie-Fleur Gautier
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France
| | - Sarah Ducamp
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France
| | - Marjorie Leduc
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Plateforme de Protéomique de l'Université Paris Descartes (3P5), 75014 Paris, France
| | - Virginie Salnot
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Plateforme de Protéomique de l'Université Paris Descartes (3P5), 75014 Paris, France
| | - François Guillonneau
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Plateforme de Protéomique de l'Université Paris Descartes (3P5), 75014 Paris, France
| | | | - John Hale
- New York Blood Center, New York, NY 10065, USA
| | - Marie-Catherine Giarratana
- Laboratory of Excellence GReX, 75015 Paris, France; UPMC University Paris 06, UMR_S938 CDR Saint-Antoine, INSERM, Prolifération et Différenciation des Cellules Souches, 75012 Paris, France
| | - Anna Raimbault
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France
| | - Luc Douay
- Laboratory of Excellence GReX, 75015 Paris, France; UPMC University Paris 06, UMR_S938 CDR Saint-Antoine, INSERM, Prolifération et Différenciation des Cellules Souches, 75012 Paris, France
| | - Catherine Lacombe
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France; Ligue Nationale Contre le Cancer, Equipe Labellisée, 75014 Paris, France
| | | | - Frédérique Verdier
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France; Ligue Nationale Contre le Cancer, Equipe Labellisée, 75014 Paris, France
| | - Yael Zermati
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France; Ligue Nationale Contre le Cancer, Equipe Labellisée, 75014 Paris, France
| | - Patrick Mayeux
- INSERM U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Laboratory of Excellence GReX, 75015 Paris, France; Plateforme de Protéomique de l'Université Paris Descartes (3P5), 75014 Paris, France; Ligue Nationale Contre le Cancer, Equipe Labellisée, 75014 Paris, France.
| |
Collapse
|
2
|
Moritz KM, Lim GB, Wintour EM. Developmental regulation of erythropoietin and erythropoiesis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:R1829-44. [PMID: 9435635 DOI: 10.1152/ajpregu.1997.273.6.r1829] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well established that erythropoiesis occurs first in the yolk sac, then in the liver, subsequently moving to the bone marrow and, in rodents, the spleen during development. The origin of the erythropoietic precursors and some factors suggested to be important for the changing location of erythropoiesis are discussed in this review. Until recently, the major site of erythropoietin (Epo) production in the fetus was thought to be the liver, but studies have shown now that the Epo gene is expressed strongly in the fetal kidney, even in the temporary mesonephros. The metanephric Epo mRNA is upregulated by anemia, downregulated by glucocorticoids, and contributes substantially to circulating hormone levels in hemorrhaged ovine fetuses. Other sites of Epo and Epo receptor production, likely to have important actions during development, are the placenta and the brain.
Collapse
Affiliation(s)
- K M Moritz
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
6
|
Mayeux P, Felix JM, Billat C, Jacquot R. Kinetics of dexamethasone binding to the glucocorticoid receptor of intact erythroid cells from rat fetal liver. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 763:205-11. [PMID: 6615891 DOI: 10.1016/0167-4889(83)90046-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The erythroid cells from the rat fetal liver have been shown to possess a receptor for glucocorticoids. In the present work, the characteristics of [3H]dexamethasone binding have been studied on intact cells, in order to minimize receptor degradation, and at 4 degrees C, in order to prevent the activation of the hormone-receptor complex. Dissociation kinetics were those of a first-order reaction and the value of the rate constant of dissociation was similar to the values available in the literature. When studied at low concentrations of the ligand and using short-term incubations, association kinetics were apparently those of a simple bimolecular reaction. But at high ligand concentrations and/or using long-term incubations, association kinetics indicated a more complex reaction. Our results were compatible with the model proposed by Pratt W.B., Kaine J.L. and Pratt V.D. (J. Biol. Chem. 250 (1975) 4584-4591) for cytosolic preparations. This model implies the rapid formation of a transient unstable form of the complex, further converted into a stable form with slower kinetics. Equilibrium dissociation constant of the first (rapid) reaction was 80 microM and the rate constant of 'stabilization' was of the order of 70 X 10(-3) min-1. These values agree with the results of Pratt et al. relative to a cytosolic preparation from rat thymocytes.
Collapse
|