1
|
Li XQ, Liu JF, Liu H, Meng Y. Extracellular vesicles for ischemia/reperfusion injury-induced acute kidney injury: a systematic review and meta-analysis of data from animal models. Syst Rev 2022; 11:197. [PMID: 36076305 PMCID: PMC9461206 DOI: 10.1186/s13643-022-02003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) induced by ischemia/reperfusion injury significantly contribute to the burden of end-stage renal disease. Extracellular vesicles (EVs), especially for stem/progenitor cell-derived EVs (stem/progenitor cell-EVs), have emerged as a promising therapy for ischemia/reperfusion injury-induced AKI. However, their regulatory effects remain poorly understood, and their therapeutic efficiency in clinical trials is controversial. Here, we performed this systematic review and meta-analysis to assess the stem/progenitor cell-EV efficacy in treating ischemia/reperfusion injury-induced AKI in preclinical rodent models. METHODS A literature search was performed in PubMed, Embase, Scopus, and Web of Science to identify controlled studies about the therapeutic efficiency of stem/progenitor cell-EVs on ischemia/reperfusion injury-induced AKI rodent models. The level of SCr, an indicator of renal function, was regarded as the primary outcome. Meta-regression analysis was used to reveal the influential factors of EV therapy. Sensitivity analysis, cumulative meta-analysis, and assessment of publication bias were also performed in our systematic review and meta-analysis. A standardized mean difference (SMD) was used as the common effect size between stem/progenitor cell-EV-treated and control groups, with values of 0.2, 0.5, 0.8, and 1.0 defined as small, medium, large, and very large effect sizes, respectively. RESULTS A total of 30 studies with 985 ischemia/reperfusion injury-induced AKI rodent models were included. The pooled results showed that EV injection could lead to a remarkable sCr reduction compared with the control group (SMD, - 3.47; 95%CI, - 4.15 to - 2.80; P < 0.001). Meanwhile, the EV treatment group had lower levels of BUN (SMD, - 3.60; 95%CI, - 4.25 to - 2.94; P < 0.001), indexes for tubular and endothelial injury, renal fibrosis (fibrosis score and α-SMA), renal inflammation (TNF-α, IL-1β, iNOS, and CD68 + macrophages), but higher levels of indexes for tubular proliferation, angiogenesis-related VEGF, and reactive oxygen species. However, our meta-regression analysis did not identify significant associations between sCr level and cell origins of EVs, injection doses, delivery routes, and therapy and outcome measurement time (all P values > 0.05). Significant publication bias was observed (Egger's test, P < 0.001). CONCLUSION Stem/progenitor cell-EVs are effective in improving renal function in rodent ischemia/reperfusion injury-induced AKI model. These vesicles may help (i) reduce cell apoptosis and stimulate cell proliferation, (ii) ameliorate inflammatory injury and renal fibrosis, (iii) promote angiogenesis, and (iv) inhibit oxidative stress. However, the current systematic review and meta-analysis did not identify significant influential factors associated with treatment effects. More preclinical studies and thoughtfully designed animal studies are needed in the future.
Collapse
Affiliation(s)
- Xia-Qing Li
- Department of Nephrology, The First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China.,Central Laboratory, The Fifth Hospital Affiliated to Jinan University, Heyuan, China
| | - Jin-Feng Liu
- Department of Nephrology, The First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China.,Central Laboratory, The Fifth Hospital Affiliated to Jinan University, Heyuan, China
| | - Han Liu
- Department of Nephrology, The First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China.,Central Laboratory, The Fifth Hospital Affiliated to Jinan University, Heyuan, China
| | - Yu Meng
- Department of Nephrology, The First Hospital Affiliated to Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, China. .,Central Laboratory, The Fifth Hospital Affiliated to Jinan University, Heyuan, China.
| |
Collapse
|
2
|
Comparison of the Effects of Mesenchymal Stem Cells with Their Extracellular Vesicles on the Treatment of Kidney Damage Induced by Chronic Renal Artery Stenosis. Stem Cells Int 2020; 2020:8814574. [PMID: 33101418 PMCID: PMC7568167 DOI: 10.1155/2020/8814574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/08/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chronic renal artery stenosis is considered one of the most common causes of renovascular hypertension (RH). Chronic hypoxia can lead to irreversible damage to renal tissue and to a progressive deterioration of renal function. We have previously shown that bone marrow-derived mesenchymal stem cells (BMSCs) improved renal parenchyma and function in a model of RH (2 kidneys, 1 clip model (2K-1C) in rats. Microvesicles (MVs) and exosomes (EXs) released by MSCs have been shown to induce effects similar to those induced by whole cells but with fewer side effects. In this study, we compared the effects of adipose-derived MSCs (ASCs) with those of the MVs and EXs released by ASCs on tissue inflammation and renal function in 2 K-1C rats. Results Flow cytometry analysis showed that even after 15 days, ASCs were still detected in both kidneys. The expression of a stem cell homing marker (SDF1-α) was increased in ASC-treated animals in both the stenotic and contralateral kidneys. Interestingly, SDF1-α expression was also increased in MV- and EX-treated animals. A hypoxia marker (HIF1-α) was upregulated in the stenotic kidney, and treatments with ASCs, MVs, and EXs were effective in reducing the expression of this marker. Stenotic animals showed a progressive increase in systolic blood pressure (SBP), while animals treated with ASCs, MVs, and EXs showed a stabilization of SBP, and this stabilization was similar among the different treatments. Stenotic animals developed significant proteinuria, which was reduced by ASCs and MVs but not by EXs. The increased expression of Col I and TGFβ in both kidneys was reduced by all the treatments, and these treatments also effectively increased the expression of the anti-inflammatory cytokine IL-10 in both kidneys; however, only ASCs were able to reduce the overexpression of the proinflammatory cytokine IL-1β in both kidneys of 2K-1C animals. Conclusion The results of this study demonstrated that the EVs released by ASCs produced beneficial results but with lower efficacy than whole cells. ASCs produced stronger effects in this model of renal chronic hypoxia, and the use of EVs instead of whole cells should be evaluated depending on the parameter to be corrected.
Collapse
|
3
|
Alicka M, Major P, Wysocki M, Marycz K. Adipose-Derived Mesenchymal Stem Cells Isolated from Patients with Type 2 Diabetes Show Reduced "Stemness" through an Altered Secretome Profile, Impaired Anti-Oxidative Protection, and Mitochondrial Dynamics Deterioration. J Clin Med 2019; 8:E765. [PMID: 31151180 PMCID: PMC6617220 DOI: 10.3390/jcm8060765] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
The widespread epidemic of obesity and type 2 diabetes (T2D), suggests that both disorders are closely linked. Several pre-clinical and clinical studies have showed that adipose-derived mesenchymal stem cells (ASC) transplantation is efficient and safe. Moreover, scientists have already highlighted the therapeutic capacity of their secretomes. In this study, we used quantitative PCR, a flow cytometry-based system, the ELISA method, spectrophotometry, and confocal and scanning electron microscopy, to compare the differences in proliferation activity, viability, morphology, mitochondrial dynamics, mRNA and miRNA expression, as well as the secretory activity of ASCs derived from two donor groups-non-diabetic and T2D patients. We demonstrated that ASCs from T2D patients showed a reduced viability and a proliferative potential. Moreover, they exhibited mitochondrial dysfunction and senescence phenotype, due to excessive oxidative stress. Significant differences were observed in the expressions of miRNA involved in cell proliferations (miR-16-5p, miR-146a-5p, and miR-145-5p), as well as miRNA and genes responsible for glucose homeostasis and insulin sensitivity (miR-24-3p, 140-3p, miR-17-5p, SIRT1, HIF-1α, LIN28, FOXO1, and TGFβ). We have observed a similar correlation of miR-16-5p, miR-146a-5p, miR-24-3p, 140-3p, miR-17-5p, and miR-145-5p expression in extracellular vesicles fraction. Furthermore, we have shown that ASCT2D exhibited a lower VEGF, adiponectin, and CXCL-12 secretion, but showed an overproduction of leptin. We have shown that type 2 diabetes attenuated crucial functions of ASC, like proliferation, viability, and secretory activity, which highly reduced their therapeutic efficiency.
Collapse
Affiliation(s)
- Michalina Alicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-365 Wrocław, Poland.
| | - Piotr Major
- 2'nd Department of General Surgery, Jagiellonian University Medical College, Kopernika 21, 31-501 Kraków, Poland.
| | - Michał Wysocki
- 2'nd Department of General Surgery, Jagiellonian University Medical College, Kopernika 21, 31-501 Kraków, Poland.
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-365 Wrocław, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Gießen, Germany.
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
4
|
Park KM, Shin YM, Kim K, Shin H. Tissue Engineering and Regenerative Medicine 2017: A Year in Review. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:327-344. [PMID: 29652594 DOI: 10.1089/ten.teb.2018.0027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In 2017, a new paradigm change caused by artificial intelligence and big data analysis resulted in innovation in each field of science and technology, and also significantly influenced progress in tissue engineering and regenerative medicine (TERM). TERM has continued to make technological advances based on interdisciplinary approaches and has contributed to the overall field of biomedical technology, including cancer biology, personalized medicine, development biology, and cell-based therapeutics. While researchers are aware that there is still a long way to go until TERM reaches the ultimate goal of patient treatment through clinical translation, the rapid progress in convergence studies led by technological improvements in TERM has been encouraging. In this review, we highlighted the significant advances made in TERM in 2017 (with an overlap of 5 months in 2016). We identified major progress in TERM in a manner similar to previous reviews published in the last few years. In addition, we carefully considered all four previous reviews during the selection process and chose main themes that minimize the duplication of the topics. Therefore, we have identified three areas that have been the focus of most journal publications in the TERM community in 2017: (i) advanced biomaterials and three-dimensional (3D) cell printing, (ii) exosomes as bioactive agents for regenerative medicine, and (iii) 3D culture in regenerative medicine.
Collapse
Affiliation(s)
- Kyung Min Park
- 1 Division of Bioengineering, Incheon National University , Incheon, Republic of Korea
| | - Young Min Shin
- 2 BioMedical Science Institute, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Kyobum Kim
- 1 Division of Bioengineering, Incheon National University , Incheon, Republic of Korea
| | - Heungsoo Shin
- 3 Department of Bioengineering, Hanyang University , Seoul, Republic of Korea.,4 BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University , Seoul, Republic of Korea
| |
Collapse
|
5
|
Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and Strategies for Improving the Regenerative Effects of Mesenchymal Stromal Cell-Based Therapies. Int J Mol Sci 2017; 18:2087. [PMID: 28974046 PMCID: PMC5666769 DOI: 10.3390/ijms18102087] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022] Open
Abstract
Cell-based therapies have the potential to revolutionize current treatments for diseases with high prevalence and related economic and social burden. Unfortunately, clinical trials have made only modest improvements in restoring normal function to degenerating tissues. This limitation is due, at least in part, to the death of transplanted cells within a few hours after transplant due to a combination of mechanical, cellular, and host factors. In particular, mechanical stress during implantation, extracellular matrix loss upon delivery, nutrient and oxygen deprivation at the recipient site, and host inflammatory response are detrimental factors limiting long-term transplanted cell survival. The beneficial effect of cell therapy for regenerative medicine ultimately depends on the number of administered cells reaching the target tissue, their viability, and their promotion of tissue regeneration. Therefore, strategies aiming at improving viable cell engraftment are crucial for regenerative medicine. Here we review the major factors that hamper successful cell engraftment and the strategies that have been studied to enhance the beneficial effects of cell therapy. Moreover, we provide a perspective on whether mesenchymal stromal cell-derived extracellular vesicle delivery, as a cell-free regenerative approach, may circumvent current cell therapy limitations.
Collapse
Affiliation(s)
- Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, via E. Chianesi 53, Rome 00144, Italy.
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, via E. Chianesi 53, Rome 00144, Italy.
| | - Martina Piccoli
- Stem Cells and Regenerative Medicine Laboratory, Foundation Institute of Pediatric Research "Città della Speranza", corso Stati Uniti 4, Padova 35127, Italy.
| | - Michela Pozzobon
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, Padova 35128, Italy.
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, Padova 35128, Italy.
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, via E. Chianesi 53, Rome 00144, Italy.
| |
Collapse
|
6
|
Abstract
Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Klinikgatan 28, 22184 Lund, Sweden
| |
Collapse
|
7
|
Mesenchymal Stromal Cells Accelerate Epithelial Tight Junction Assembly via the AMP-Activated Protein Kinase Pathway, Independently of Liver Kinase B1. Stem Cells Int 2017; 2017:9717353. [PMID: 28781597 PMCID: PMC5525096 DOI: 10.1155/2017/9717353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) are fibroblast-like multipotent cells capable of tissue-repair properties. Given the essentiality of tight junctions (TJ) in epithelial integrity, we hypothesized that MSC modulate TJ formation, via the AMP-activated kinase (AMPK) pathway. Liver kinase-β1 (LKB1) and Ca2+-calmodulin-dependent protein kinase kinase (CaMKK) represent the main kinases that activate AMPK. METHODS The in vitro Ca2+ switch from 5 μM to 1.8 mM was performed using epithelial Madin-Darby canine kidney (MDCK) cells cultured alone or cocultured with rat bone marrow-derived MSC or preexposed to MSC-conditioned medium. TJ assembly was measured by assessing ZO-1 relocation to cell-cell contacts. Experiments were conducted using MDCK stably expressing short-hairpin-RNA (shRNA) against LKB1 or luciferase (LUC, as controls). Compound STO-609 (50 μM) was used as CaMKK inhibitor. RESULTS Following Ca2+ switch, ZO-1 relocation and phosphorylation/activation of AMPK were significantly higher in MDCK/MSC compared to MDCK. No difference in AMPK phosphorylation was observed between LKB1-shRNA and Luc-shRNA MDCK following Ca2+ switch. Conversely, incubation with STO-609 prior to Ca2+ switch prevented AMPK phosphorylation and ZO-1 relocation. MSC-conditioned medium slightly but significantly increased AMPK activation and accelerated TJ-associated distribution of ZO-1 post Ca2+ switch in comparison to regular medium. CONCLUSIONS MSC modulate the assembly of epithelial TJ, via the CaMKK/AMPK pathway independently of LKB1.
Collapse
|
8
|
Diverging Concepts and Novel Perspectives in Regenerative Medicine. Int J Mol Sci 2017; 18:ijms18051021. [PMID: 28486410 PMCID: PMC5454934 DOI: 10.3390/ijms18051021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Regenerative medicine has rapidly evolved, due to progress in cell and molecular biology allowing the isolation, characterization, expansion, and engineering of cells as therapeutic tools. Despite past limited success in the clinical translation of several promising preclinical results, this novel field is now entering a phase of renewed confidence and productivity, marked by the commercialization of the first cell therapy products. Ongoing issues in the field include the use of pluripotent vs. somatic and of allogenic vs. autologous stem cells. Moreover, the recognition that several of the observed beneficial effects of cell therapy are not due to integration of the transplanted cells, but rather to paracrine signals released by the exogenous cells, is generating new therapeutic perspectives in the field. Somatic stem cells are outperforming embryonic and induced pluripotent stem cells in clinical applications, mainly because of their more favorable safety profile. Presently, both autologous and allogeneic somatic stem cells seem to be equally safe and effective under several different conditions. Recognition that a number of therapeutic effects of transplanted cells are mediated by paracrine signals, and that such signals can be found in extracellular vesicles isolated from culture media, opens novel therapeutic perspectives in the field of regenerative medicine.
Collapse
|
9
|
Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, Lerman A, Lerman LO. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int 2017; 92:114-124. [PMID: 28242034 DOI: 10.1016/j.kint.2016.12.023] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis.
Collapse
Affiliation(s)
- Alfonso Eirin
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiang-Yang Zhu
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Amrutesh S Puranik
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hui Tang
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kelly A McGurren
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Divisions of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
10
|
de Almeida DC, Bassi ÊJ, Azevedo H, Anderson L, Origassa CST, Cenedeze MA, de Andrade-Oliveira V, Felizardo RJF, da Silva RC, Hiyane MI, Semedo P, Dos Reis MA, Moreira-Filho CA, Verjovski-Almeida S, Pacheco-Silva Á, Câmara NOS. A Regulatory miRNA-mRNA Network Is Associated with Tissue Repair Induced by Mesenchymal Stromal Cells in Acute Kidney Injury. Front Immunol 2017; 7:645. [PMID: 28096802 PMCID: PMC5206861 DOI: 10.3389/fimmu.2016.00645] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) orchestrate tissue repair by releasing cell-derived microvesicles (MVs), which, presumably by small RNA species, modulate global gene expression. The knowledge of miRNA/mRNA signatures linked to a reparative status may elucidate some of the molecular events associated with MSC protection. Here, we used a model of cisplatin-induced kidney injury (acute kidney injury) to assess how MSCs or MVs could restore tissue function. MSCs and MVs presented similar protective effects, which were evidenced in vivo and in vitro by modulating apoptosis, inflammation, oxidative stress, and a set of prosurvival molecules. In addition, we observed that miRNAs (i.e., miR-880, miR-141, miR-377, and miR-21) were modulated, thereby showing active participation on regenerative process. Subsequently, we identified that MSC regulates a particular miRNA subset which mRNA targets are associated with Wnt/TGF-β, fibrosis, and epithelial–mesenchymal transition signaling pathways. Our results suggest that MSCs release MVs that transcriptionally reprogram injured cells, thereby modulating a specific miRNA–mRNA network.
Collapse
Affiliation(s)
- Danilo Candido de Almeida
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ênio Jose Bassi
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Hatylas Azevedo
- Departamento de Pediatria, Faculdade de Medicina, Universidade de São Paulo , São Paulo , Brazil
| | - Letícia Anderson
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Instituto Butantan, São Paulo, Brazil
| | | | - Marcos Antônio Cenedeze
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo , São Paulo , Brazil
| | | | | | - Reinaldo Correia da Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo , Brazil
| | - Meire Ioshie Hiyane
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo , Brazil
| | - Patricia Semedo
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo , São Paulo , Brazil
| | | | | | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Instituto Butantan, São Paulo, Brazil
| | - Álvaro Pacheco-Silva
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Niels Olsen Saraiva Câmara
- Departamento de Medicina, Divisão de Nefrologia, Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L, Zhang Y, Li Q, Zhang X, Li X. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep 2016; 6:34562. [PMID: 27686625 PMCID: PMC5043341 DOI: 10.1038/srep34562] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Although accumulated evidence supports the notion that mesenchymal stem cells (MSCs) act in a paracrine manner, the mechanisms are still not fully understood. Recently, MSC-derived exosomes (MSC-Exos), a type of microvesicle released from MSCs, were thought to carry functional proteins and RNAs to recipient cells and play therapeutic roles. In the present study, we intravitreally injected MSCs derived from either mouse adipose tissue or human umbilical cord, and their exosomes to observe and compare their functions in a mouse model of laser-induced retinal injury. We found that both MSCs and their exosomes reduced damage, inhibited apoptosis, and suppressed inflammatory responses to obtain better visual function to nearly the same extent in vivo. Obvious down-regulation of monocyte chemotactic protein (MCP)-1 in the retina was found after MSC-Exos injection. In vitro, MSC-Exos also down-regulated MCP-1 mRNA expression in primarily cultured retinal cells after thermal injury. It was further demonstrated that intravitreal injection of an MCP-1-neutralizing antibody promoted the recovery of retinal laser injury, whereas the therapeutic effect of exosomes was abolished when MSC-Exos and MCP-1 were administrated simultaneously. Collectively, these results suggest that MSC-Exos ameliorate laser-induced retinal injury partially through down-regulation of MCP-1.
Collapse
Affiliation(s)
- Bo Yu
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, USA
| | - Chang Su
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Yuanfeng Jiang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Xiteng Chen
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Lingling Bai
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Yan Zhang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, USA
| | - Xiaomin Zhang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| |
Collapse
|
12
|
McGuinness D, Anthony DF, Moulisova V, MacDonald AI, MacIntyre A, Thomson J, Nag A, Davies RW, Shiels PG. Microvesicles but Not Exosomes from Pathfinder Cells Stimulate Functional Recovery of the Pancreas in a Mouse Streptozotocin-Induced Diabetes Model. Rejuvenation Res 2016; 19:223-32. [DOI: 10.1089/rej.2015.1723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dagmara McGuinness
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Diana F. Anthony
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Vladimira Moulisova
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Alasdair I. MacDonald
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Alan MacIntyre
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Jacqueline Thomson
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | | | - R. Wayne Davies
- University of Edinburgh, School of Informatics, Edinburgh, United Kingdom
| | - Paul G. Shiels
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| |
Collapse
|
13
|
Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 2016; 16:859-71. [PMID: 27011289 DOI: 10.1517/14712598.2016.1170804] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. AREAS COVERED The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. EXPERT OPINION While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification.
Collapse
Affiliation(s)
- Antoine Monsel
- a Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care , La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre and Marie Curie (UPMC) Univ Paris 06 , Paris , France
| | - Ying-Gang Zhu
- b Department of Pulmonary Disease , Huadong Hospital, Fudan University , Shanghai , China
| | - Varun Gudapati
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Hyungsun Lim
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Jae W Lee
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
14
|
The Influence of Aging on the Regenerative Potential of Human Adipose Derived Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:2152435. [PMID: 26941800 PMCID: PMC4749808 DOI: 10.1155/2016/2152435] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Tissue regeneration using human adipose derived mesenchymal stem cells (hASCs) has significant potential as a novel treatment for many degenerative bone and joint diseases. Previous studies have established that age negatively affects the proliferation status and the osteogenic and chondrogenic differentiation potential of mesenchymal stem cells. The aim of this study was to assess the age-related maintenance of physiological function and differentiation potential of hASCs in vitro. hASCs were isolated from patients of four different age groups: (1) >20 years (n = 7), (2) >50 years (n = 7), (3) >60 years (n = 7), and (4) >70 years (n = 7). The hASCs were characterized according to the number of fibroblasts colony forming unit (CFU-F), proliferation rate, population doubling time (PDT), and quantified parameters of adipogenic, chondrogenic, and osteogenic differentiation. Compared to younger cells, aged hASCs had decreased proliferation rates, decreased chondrogenic and osteogenic potential, and increased senescent features. A shift in favor of adipogenic differentiation with increased age was also observed. As many bone and joint diseases increase in prevalence with age, it is important to consider the negative influence of age on hASCs viability, proliferation status, and multilineage differentiation potential when considering the potential therapeutic applications of hASCs.
Collapse
|
15
|
Monteiro Carvalho Mori da Cunha MG, Zia S, Oliveira Arcolino F, Carlon MS, Beckmann DV, Pippi NL, Luhers Graça D, Levtchenko E, Deprest J, Toelen J. Amniotic Fluid Derived Stem Cells with a Renal Progenitor Phenotype Inhibit Interstitial Fibrosis in Renal Ischemia and Reperfusion Injury in Rats. PLoS One 2015; 10:e0136145. [PMID: 26295710 PMCID: PMC4546614 DOI: 10.1371/journal.pone.0136145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
Objectives Mesenchymal stem cells derived from human amniotic fluid (hAFSCs) are a promising source for cellular therapy, especially for renal disorders, as a subpopulation is derived from the fetal urinary tract. The purpose of this study was to evaluate if hAFSCs with a renal progenitor phenotype demonstrate a nephroprotective effect in acute ischemia reperfusion (I/R) model and prevent late stage fibrosis. Methods A total of 45 male 12-wk-old Wistar rats were divided into three equal groups;: rats subjected to I/R injury and treated with Chang Medium, rats subjected to I/R injury and treated with hAFSCs and sham-operated animals. In the first part of this study, hAFSCs that highly expressed CD24, CD117, SIX2 and PAX2 were isolated and characterized. In the second part, renal I/R injury was induced in male rats and cellular treatment was performed 6 hours later via arterial injection. Functional and histological analyses were performed 24 hours, 48 hours and 2 months after treatment using serum creatinine, urine protein to creatinine ratio, inflammatory and regeneration markers and histomorphometric analysis of the kidney. Statistical analysis was performed by analysis of variance followed by the Tukey’s test for multiple comparisons or by nonparametric Kruskal-Wallis followed by Dunn. Statistical significance level was defined as p <0.05. Results hAFSCs treatment resulted in significantly reduced serum creatinine level at 24 hours, less tubular necrosis, less hyaline cast formation, higher proliferation index, less inflammatory cell infiltration and less myofibroblasts at 48h. The treated group had less fibrosis and proteinuria at 2 months after injury. Conclusion hAFSCs contain a renal progenitor cell subpopulation that has a nephroprotective effect when delivered intra-arterially in rats with renal I/R injury, and reduces interstitial fibrosis on long term follow-up.
Collapse
Affiliation(s)
- Marina Gabriela Monteiro Carvalho Mori da Cunha
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Fanny Oliveira Arcolino
- Department of Development and Regeneration, Organ System Cluster, Laboratory of Pediatric Nephrology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marianne Sylvia Carlon
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Diego Vilibaldo Beckmann
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Ney Luis Pippi
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Dominguita Luhers Graça
- Experimental Veterinary Surgery Laboratory, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Laboratory of Pediatric Nephrology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Fetal therapy group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
16
|
Leuning DG, Reinders ME, de Fijter JW, Rabelink TJ. Clinical Translation of Multipotent Mesenchymal Stromal Cells in Transplantation. Semin Nephrol 2014; 34:351-64. [DOI: 10.1016/j.semnephrol.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
McGlynn LM, Eller K, MacDonald AI, Macintyre A, Russell D, Koppelstaetter C, Davies RW, Shiels PG. Pathfinder cells provide a novel therapeutic intervention for acute kidney injury. Rejuvenation Res 2013; 16:11-20. [PMID: 23421868 DOI: 10.1089/rej.2012.1350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathfinder cells (PCs) are a novel class of adult-derived cells that facilitate functional repair of host tissue. We used rat PCs to demonstrate that they enable the functional mitigation of ischemia reperfusion (I/R) injury in a mouse model of renal damage. Female C57BL/6 mice were subjected to 30 min of renal ischemia and treated with intravenous (i.v.) injection of saline (control) or male rat pancreas-derived PCs in blinded experimentation. Kidney function was assessed 14 days after treatment by measuring serum creatinine (SC) levels. Kidney tissue was assessed by immunohistochemistry (IHC) for markers of cellular damage, proliferation, and senescence (TUNEL, Ki67, p16(ink4a), p21). Fluorescence in situ hybridization (FISH) was performed to determine the presence of any rat (i.e., pathfinder) cells in the mouse tissue. PC-treated animals demonstrated superior renal function at day 14 post-I/R, in comparison to saline-treated controls, as measured by SC levels (0.13 mg/dL vs. 0.23 mg/dL, p<0.001). PC-treated kidney tissue expressed significantly lower levels of p16(ink4a) in comparison to the control group (p=0.009). FISH analysis demonstrated that the overwhelming majority of repaired kidney tissue was mouse in origin. Rat PCs were only detected at a frequency of 0.02%. These data confirm that PCs have the ability to mitigate functional damage to kidney tissue following I/R injury. Kidneys of PC-treated animals showed evidence of improved function and reduced expression of damage markers. The PCs appear to act in a paracrine fashion, stimulating the host tissue to recover functionally, rather than by differentiating into renal cells. This study demonstrates that pancreatic-derived PCs from the adult rat can enable functional repair of renal damage in mice. It validates the use of PCs to regenerate damaged tissues and also offers a novel therapeutic intervention for repair of solid organ damage in situ.
Collapse
Affiliation(s)
- Liane M McGlynn
- Instititute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 2010; 19:7-12. [PMID: 19823086 DOI: 10.1097/mnh.0b013e328332fb6f] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The mechanism of stem cell-induced kidney repair remains controversial. Engraftment of bone marrow-derived stem cells is considered a rare event and several studies point to paracrine/endocrine processes. This review focuses on microvesicle-mediated transfer of genetic information between stem cells and injured tissue as a paracrine/endocrine mechanism. RECENT FINDINGS The following findings support a bidirectional exchange of genetic information between stem and injured cells: microvesicles shuttle defined patterns of mRNA and microRNA, are actively released from embryonic and adult stem cells and are internalized by a receptor-mediated mechanism in target cells; transcripts delivered by microvesicles from injured cells may reprogram the phenotype of stem cells to acquire specific features of the tissue; transcripts delivered by microvesicles from stem cells may induce dedifferentiation of cells surviving injury with cell cycle reentry and tissue self-repair. SUMMARY Transfer of genetic information from injured cells may explain stem cell functional and phenotypic changes without the need for transdifferentiation into tissue cells. On the contrary, transfer of genetic information from stem cells may redirect altered functions in target cells suggesting that stem cells may repair damaged tissues without directly replacing parenchymal cells.
Collapse
|