1
|
Fujisawa H, Watanabe T, Komine O, Fuse S, Masaki M, Iwata N, Murao N, Seino Y, Takeuchi H, Yamanaka K, Sawada M, Suzuki A, Sugimura Y. Prolonged extracellular low sodium concentrations and subsequent their rapid correction modulate nitric oxide production dependent on NFAT5 in microglia. Free Radic Biol Med 2024; 223:458-472. [PMID: 39155026 DOI: 10.1016/j.freeradbiomed.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Hyponatremia is the most common clinical electrolyte disorder. Chronic hyponatremia has been recently reported to be associated with falls, fracture, osteoporosis, neurocognitive impairment, and mental manifestations. In the treatment of chronic hyponatremia, overly rapid correction of hyponatremia can cause osmotic demyelination syndrome (ODS), a central demyelinating disease that is also associated with neurological morbidity and mortality. Using a rat model, we have previously shown that microglia play a critical role in the pathogenesis of ODS. However, the direct effect of rapid correction of hyponatremia on microglia is unknown. Furthermore, the effect of chronic hyponatremia on microglia remains elusive. Using microglial cell lines BV-2 and 6-3, we show here that low extracellular sodium concentrations (36 mmol/L decrease; LS) suppress Nos2 mRNA expression and nitric oxide (NO) production of microglia. On rapid correction of low sodium concentrations, NO production was significantly increased in both cells, suggesting that acute correction of hyponatremia partly directly contributes to increased Nos2 mRNA expression and NO release in ODS pathophysiology. LS also suppressed expression and nuclear translocation of nuclear factor of activated T cells-5 (NFAT5), a transcription factor that regulates the expression of genes involved in osmotic stress. Furthermore, overexpression of NFAT5 significantly increased Nos2 mRNA expression and NO production in BV-2 cells. Expressions of Nos2 and Nfat5 mRNA were also modulated in microglia isolated from cerebral cortex in chronic hyponatremia model mice. These data indicate that LS modulates microglial NO production dependent on NFAT5 and suggest that microglia contribute to hyponatremia-induced neuronal dysfunctions.
Collapse
Affiliation(s)
- Haruki Fujisawa
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan
| | - Sachiho Fuse
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Momoka Masaki
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Naoko Iwata
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Naoya Murao
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, 236-0004, Japan; Department of Neurology, Graduate School of Medicine, International University of Health and Welfare, Narita, Chiba, 286-8686, Japan; Center for Intractable Neurological Diseases and Dementia, International University of Health and Welfare Atami Hospital, Atami, Shizuoka, 413-0012, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan
| | - Makoto Sawada
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan; Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 464-8601, Japan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
2
|
Fuse S, Fujisawa H, Murao N, Iwata N, Watanabe T, Seino Y, Takeuchi H, Suzuki A, Sugimura Y. Effects of hypernatremia on the microglia. Peptides 2024; 179:171267. [PMID: 38908517 DOI: 10.1016/j.peptides.2024.171267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Signs and symptoms of hypernatremia largely indicate central nervous system dysfunction. Acute hypernatremia can cause demyelinating lesions similar to that observed in osmotic demyelination syndrome (ODS). We have previously demonstrated that microglia accumulate in ODS lesions and minocycline protects against ODS by inhibiting microglial activation. However, the direct effect of rapid rise in the sodium concentrations on microglia is largely unknown. In addition, the effect of chronic hypernatremia on microglia also remains elusive. Here, we investigated the effects of acute (6 or 24 h) and chronic (the extracellular sodium concentration was increased gradually for at least 7 days) high sodium concentrations on microglia using the microglial cell line, BV-2. We found that both acute and chronic high sodium concentrations increase NOS2 expression and nitric oxide (NO) production. We also demonstrated that the expression of nuclear factor of activated T-cells-5 (NFAT5) is increased by high sodium concentrations. Furthermore, NFAT5 knockdown suppressed NOS2 expression and NO production. We also demonstrated that high sodium concentrations decreased intracellular Ca2+ concentration and an inhibitor of Na+/Ca2+ exchanger, NCX, suppressed a decrease in intracellular Ca2+ concentrations and NOS2 expression and NO production induced by high sodium concentrations. Furthermore, minocycline inhibited NOS2 expression and NO production induced by high sodium concentrations. These in vitro data suggest that microglial activity in response to high sodium concentrations is regulated by NFAT5 and Ca2+ efflux through NCX and is suppressed by minocycline.
Collapse
Affiliation(s)
- Sachiho Fuse
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Haruki Fujisawa
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Naoya Murao
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Naoko Iwata
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Oncology Innovation Center, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan; Department of Neurology, Graduate School of Medicine, International University of Health and Welfare, Narita, Chiba 286-8686, Japan; Center for Intractable Neurological Diseases and Dementia, International University of Health and Welfare Atami Hospital, Atami, Shizuoka 413-0012, Japan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
3
|
Gankam Kengne F. Adaptation of the Brain to Hyponatremia and Its Clinical Implications. J Clin Med 2023; 12:jcm12051714. [PMID: 36902500 PMCID: PMC10002753 DOI: 10.3390/jcm12051714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Hyponatremia is the most common electrolyte disorder, occurring in up to 25% of hospitalized patients. Hypo-osmotic hyponatremia when severe and left untreated invariably results in cell swelling, which can lead to fatal consequences, especially in the central nervous system. The brain is particularly vulnerable to the consequences of decreased extracellular osmolarity; because of being encased in the rigid skull, it cannot withstand persistent swelling. Moreover, serum sodium is the major determinant of extracellular ionic balance, which in turn governs crucial brain functions such as the excitability of neurons. For these reasons, the human brain has developed specific ways to adapt to hyponatremia and prevent brain edema. On the other hand, it is well known that rapid correction of chronic and severe hyponatremia can lead to brain demyelination, a condition known as osmotic demyelination syndrome. In this paper, we will discuss the mechanisms of brain adaptation to acute and chronic hyponatremia and the neurological symptoms of these conditions as well as the pathophysiology and prevention of osmotic demyelination syndrome.
Collapse
|
4
|
Lee JH, Kim CS, Bae EH, Kim SW, Ma SK. Osmotic Demyelination Syndrome Associated with Hypernatremia Caused by Lactulose Enema in a Patient with Chronic Alcoholism. Electrolyte Blood Press 2021; 19:15-18. [PMID: 34290820 PMCID: PMC8267071 DOI: 10.5049/ebp.2021.19.1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/03/2022] Open
Abstract
A 44-year-old man with chronic alcoholism presented with seizure and loss of consciousness. He was diagnosed with alcoholic hepatic encephalopathy, and his neurologic symptoms recovered after lactulose enema treatment. His initial serum sodium level was 141mEq/L. However, his mental state became confused after treatment with lactulose enema for five days, and his serum sodium level increased to 178mEq/L. After five days of gradual correction of serum sodium level from 178mEq/L to 140mEq/L, the patient's mental state recovered, but motor weakness in both limbs remained. Therefore, magnetic resonance imaging of the brain was performed. T2-weighted brain images showed bilateral symmetrical hyperintensities in the central pons, basal ganglia, thalami, hippocampi and unci, which were consistent with central pontine and extrapontine myelinolysis. We report a rare case of osmotic demyelination syndrome that occurred as a result of a rapid increase from a normal sodium level to hypernatremia caused by lactulose enema administered to treat alcoholic hepatic encephalopathy.
Collapse
Affiliation(s)
- Jeong Ho Lee
- Department of Internal Medicine, Gwangju Veterans Hospital, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Redmon SN, Yarishkin O, Lakk M, Jo A, Mustafic E, Tvrdik P, Križaj D. TRPV4 channels mediate the mechanoresponse in retinal microglia. Glia 2021; 69:1563-1582. [PMID: 33624376 PMCID: PMC8989051 DOI: 10.1002/glia.23979] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.
Collapse
Affiliation(s)
- Sarah N. Redmon
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Andrew Jo
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Edin Mustafic
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Peter Tvrdik
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville VA 22908
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84132
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84132
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT 84132
| |
Collapse
|
6
|
Scalisi J, Balau B, Deneyer L, Bouchat J, Gilloteaux J, Nicaise C. Blood-brain barrier permeability towards small and large tracers in a mouse model of osmotic demyelination syndrome. Neurosci Lett 2021; 746:135665. [DOI: 10.1016/j.neulet.2021.135665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 01/01/2023]
|
7
|
Nicaise C, Marneffe C, Bouchat J, Gilloteaux J. Osmotic Demyelination: From an Oligodendrocyte to an Astrocyte Perspective. Int J Mol Sci 2019; 20:E1124. [PMID: 30841618 PMCID: PMC6429405 DOI: 10.3390/ijms20051124] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Osmotic demyelination syndrome (ODS) is a disorder of the central myelin that is often associated with a precipitous rise of serum sodium. Remarkably, while the myelin and oligodendrocytes of specific brain areas degenerate during the disease, neighboring neurons and axons appear unspoiled, and neuroinflammation appears only once demyelination is well established. In addition to blood‒brain barrier breakdown and microglia activation, astrocyte death is among one of the earliest events during ODS pathology. This review will focus on various aspects of biochemical, molecular and cellular aspects of oligodendrocyte and astrocyte changes in ODS-susceptible brain regions, with an emphasis on the crosstalk between those two glial cells. Emerging evidence pointing to the initiating role of astrocytes in region-specific degeneration are discussed.
Collapse
Affiliation(s)
| | - Catherine Marneffe
- Laboratory of Glia Biology (VIB-KU Leuven Center for Brain & Disease Research), Department of Neuroscience, KU Leuven, 3000 Leuven, Belgium.
| | - Joanna Bouchat
- URPhyM-NARILIS, Université de Namur, 5000 Namur, Belgium.
| | - Jacques Gilloteaux
- URPhyM-NARILIS, Université de Namur, 5000 Namur, Belgium.
- Department of Anatomical Sciences, St George's University School of Medicine, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
8
|
Bouchat J, Couturier B, Marneffe C, Gankam-Kengne F, Balau B, De Swert K, Brion JP, Poncelet L, Gilloteaux J, Nicaise C. Regional oligodendrocytopathy and astrocytopathy precede myelin loss and blood-brain barrier disruption in a murine model of osmotic demyelination syndrome. Glia 2017; 66:606-622. [DOI: 10.1002/glia.23268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/28/2022]
Affiliation(s)
| | - Bruno Couturier
- Department of General Medicine; Erasme Hospital, Université Libre de Bruxelles; Bruxelles Belgium
- Laboratory of Histology, Neuroanatomy and Neuropathology; Université Libre de Bruxelles; Bruxelles Belgium
| | | | - Fabrice Gankam-Kengne
- Laboratory of Histology, Neuroanatomy and Neuropathology; Université Libre de Bruxelles; Bruxelles Belgium
- Department of Nephrology; EpiCURA Ath; Ath Belgium
| | - Benoît Balau
- URPhyM - NARILIS, Université de Namur; Namur Belgium
| | | | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology; Université Libre de Bruxelles; Bruxelles Belgium
| | - Luc Poncelet
- Laboratory of Anatomy, Biomechanics and Organogenesis; Université Libre de Bruxelles; Bruxelles Belgium
| | - Jacques Gilloteaux
- URPhyM - NARILIS, Université de Namur; Namur Belgium
- Department of Anatomical Sciences; St George's University School of Medicine, Newcastle upon Tyne; United Kingdom
| | | |
Collapse
|
9
|
Sánchez-Ferrer ML, Prieto-Sánchez MT, Orozco-Fernández R, Machado-Linde F, Nieto-Diaz A. Central pontine myelinolysis during pregnancy: Pathogenesis, diagnosis and management. J OBSTET GYNAECOL 2016; 37:273-279. [DOI: 10.1080/01443615.2016.1244808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- María Luisa Sánchez-Ferrer
- Obstetrics and Gynaecology Department, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Spain
| | - María Teresa Prieto-Sánchez
- Obstetrics and Gynaecology Department, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Spain
| | - Rodrigo Orozco-Fernández
- Obstetrics and Gynaecology Department, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Spain
| | - Francisco Machado-Linde
- Obstetrics and Gynaecology Department, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Spain
| | - Anibal Nieto-Diaz
- Obstetrics and Gynaecology Department, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Cheng HM, Li SH. A peritoneal dialysis patient with osmotic demyelination syndrome. Int J Organ Transplant Med 2016. [DOI: 10.1016/j.hkjn.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Rafat C, Flamant M, Gaudry S, Vidal-Petiot E, Ricard JD, Dreyfuss D. Hyponatremia in the intensive care unit: How to avoid a Zugzwang situation? Ann Intensive Care 2015; 5:39. [PMID: 26553121 PMCID: PMC4639545 DOI: 10.1186/s13613-015-0066-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022] Open
Abstract
Hyponatremia is a common
electrolyte derangement in the setting of the intensive care unit. Life-threatening neurological complications may arise not only in case of a severe (<120 mmol/L) and acute fall of plasma sodium levels, but may also stem from overly rapid correction of hyponatremia. Additionally, even mild hyponatremia carries a poor short-term and long-term prognosis across a wide range of conditions. Its multifaceted and intricate physiopathology may seem deterring at first glance, yet a careful multi-step diagnostic approach may easily unravel the underlying mechanisms and enable physicians to adopt the adequate measures at the patient’s bedside. Unless hyponatremia is associated with obvious extracellular fluid volume increase such as in heart failure or cirrhosis, hypertonic saline therapy is the cornerstone of the therapeutic of profound or severely symptomatic hyponatremia. When overcorrection of hyponatremia occurs, recent data indicate that re-lowering of plasma sodium levels through the infusion of hypotonic fluids and the cautious use of desmopressin acetate represent a reasonable strategy. New therapeutic options have recently emerged, foremost among these being vaptans, but their use in the setting of the intensive care unit remains to be clarified.
Collapse
Affiliation(s)
- Cédric Rafat
- AP-HP, Service de Réanimation Médico-Chirurgicale, Hôpital Louis Mourier, Colombes, France. .,AP-HP, Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Paris, France.
| | - Martin Flamant
- AP-HP, Service de Physiologie Rénale, Hôpital Bichat, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,INSERM, U1149, Centre de Recherche sur l'Inflammation, Paris, France.
| | - Stéphane Gaudry
- AP-HP, Service de Réanimation Médico-Chirurgicale, Hôpital Louis Mourier, Colombes, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,ECEVE UMR 1123, ECEVE, Paris, France.
| | - Emmanuelle Vidal-Petiot
- AP-HP, Service de Physiologie Rénale, Hôpital Bichat, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,INSERM, U1149, Centre de Recherche sur l'Inflammation, Paris, France.
| | - Jean-Damien Ricard
- AP-HP, Service de Réanimation Médico-Chirurgicale, Hôpital Louis Mourier, Colombes, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,INSERM UMR 1137, IAME, Paris, France.
| | - Didier Dreyfuss
- AP-HP, Service de Réanimation Médico-Chirurgicale, Hôpital Louis Mourier, Colombes, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,INSERM UMR 1137, IAME, Paris, France.
| |
Collapse
|
12
|
Podestà MA, Faravelli I, Cucchiari D, Reggiani F, Oldani S, Fedeli C, Graziani G. Neurological Counterparts of Hyponatremia: Pathological Mechanisms and Clinical Manifestations. Curr Neurol Neurosci Rep 2015; 15:18. [DOI: 10.1007/s11910-015-0536-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Takagi H, Sugimura Y, Suzuki H, Iwama S, Izumida H, Fujisawa H, Ogawa K, Nakashima K, Ochiai H, Takeuchi S, Kiyota A, Suga H, Goto M, Banno R, Arima H, Oiso Y. Minocycline prevents osmotic demyelination associated with aquaresis. Kidney Int 2014; 86:954-64. [PMID: 24759153 DOI: 10.1038/ki.2014.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 11/09/2022]
Abstract
Overly rapid correction of chronic hyponatremia can cause osmotic demyelination syndrome (ODS). Minocycline protects ODS associated with overly rapid correction of chronic hyponatremia with hypertonic saline infusion in rats. In clinical practice, inadvertent rapid correction frequently occurs due to water diuresis, when vasopressin action suddenly ceases. In addition, vasopressin receptor antagonists have been applied to treat hyponatremia. Here the susceptibility to and pathology of ODS were evaluated using rat models developed to represent rapid correction of chronic hyponatremia in the clinical setting. The protective effect of minocycline against ODS was assessed. Chronic hyponatremia was rapidly corrected by 1 (T1) or 10 mg/kg (T10) of tolvaptan, removal of desmopressin infusion pumps (RP), or administration of hypertonic saline. The severity of neurological impairment in the T1 group was significantly milder than in other groups and brain hemorrhage was found only in the T10 and desmopressin infusion removal groups. Minocycline inhibited demyelination in the T1 group. Further, immunohistochemistry showed loss of aquaporin-4 (AQP4) in astrocytes before demyelination developed. Interestingly, serum AQP4 levels were associated with neurological impairments. Thus, minocycline can prevent ODS caused by overly rapid correction of hyponatremia due to water diuresis associated with vasopressin action suppression. Increased serum AQP4 levels may be a predictive marker for ODS.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyuki Suzuki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisakazu Izumida
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruki Fujisawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichiro Ogawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotaro Nakashima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ochiai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Takeuchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Kiyota
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Hassan I, Shing C, Bajraszewski CE, Gleason A, Hayhow BD, Velakoulis D. Osmotic demyelination syndrome: An under-recognised cause of delirium? Aust N Z J Psychiatry 2013; 47:287-8. [PMID: 22952193 DOI: 10.1177/0004867412459813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Islam Hassan
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Parkville, Australia
| | - Christopher Shing
- Consultation-Liaison Psychiatry Service, Maroondah Hospital, Ringwood East, Australia
| | | | - Andrew Gleason
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Parkville, Australia
| | - Bradleigh D Hayhow
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Parkville, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, The Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
15
|
Extrapontine myelinolysis of osmotic demyelination syndrome in a case of postoperative suprasellar arachnoid cyst. Case Rep Med 2012; 2012:679257. [PMID: 23326275 PMCID: PMC3544276 DOI: 10.1155/2012/679257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022] Open
Abstract
The extrapontine myelinolysis of osmotic demyelination syndrome (ODS) is a well-known but uncommon disorder of the central nervous system. Although the mechanism is not fully understood and the treatment is controversial, hyponatremia is probably considered to be the main pathophysiological basis. There are few reports of ODS caused by a sellar lesion. Here we present a case of suprasellar arachnoid cyst that developed extrapontine myelinolysis of ODS after a neuroendoscopic treatment procedure. It is suggested that patients with suprasellar lesions are at risk of developing extrapontine myelinolysis of ODS and correction of hyponatremia in these cases should be closely monitored.
Collapse
|
16
|
Jovanovich AJ, Berl T. Where vaptans do and do not fit in the treatment of hyponatremia. Kidney Int 2012; 83:563-7. [PMID: 23254896 DOI: 10.1038/ki.2012.402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The treatment of hyponatremia, an exceedingly common electrolyte disorder, has been a subject of controversy for many years. The advent of vasopressin antagonists (vaptans) has added to the treatment arsenal. This review focuses on why hyponatremia should be treated and the role of these antagonists in the treatment. Upon analysis of the available literature, we conclude that there is presently no role for vaptans in acute symptomatic hyponatremia. Although numerous therapeutic approaches are available for chronic symptomatic hyponatremia, vasopressin antagonists provide a simpler treatment option. Vaptans are efficacious in raising serum sodium in long-standing 'asymptomatic' hyponatremia. However, the cost of the only Food and Drug Administration-approved oral agent (tolvaptan) makes its use prohibitive for most patients in this setting.
Collapse
Affiliation(s)
- Anna J Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado 80045, USA
| | | |
Collapse
|
17
|
Abstract
Treatment of hypotonic hyponatremia often challenges clinicians on many counts. Despite similar serum sodium concentrations, clinical manifestations can range from mild to life threatening. Some patients require active management, whereas others recover without intervention. Therapeutic measures frequently yield safe correction, yet the same measures can result in osmotic demyelination. To address this challenge, we present a practical approach to managing hyponatremia that centers on two elements: a diagnostic evaluation directed at the pathogenesis and putative causes of hyponatremia, the case-specific clinical and laboratory features, and the associated clinical risk; and a management plan tailored to the diagnostic findings that incorporates quantitative projections of fluid therapy and fluid losses on the patient's serum sodium, balances potential benefits and risks, and emphasizes vigilant monitoring. These principles should enable the clinician to formulate a management plan that addresses expeditiously three critical questions: Which of the determinants of the serum sodium are deranged and what is the underlying culprit? How urgent is the need for intervention? What specific therapy should be instituted and which are the associated pitfalls?
Collapse
Affiliation(s)
- Horacio J Adrogué
- Department of Medicine, Baylor College of Medicine, Methodist Hospital, Houston, Texas, USA
| | | |
Collapse
|
18
|
Abstract
Hyponatremia is the most frequent electrolyte disorder and the syndrome of inappropriate antidiuretic hormone secretion (SIADH) accounts for approximately one-third of all cases. In the diagnosis of SIADH it is important to ascertain the euvolemic state of extracellular fluid volume, both clinically and by laboratory measurements. SIADH should be treated to cure symptoms. While this is undisputed in the presence of grave or advanced symptoms, the clinical role and the indications for treatment in the presence of mild to moderate symptoms are currently unclear. Therapeutic modalities include nonspecific measures and means (fluid restriction, hypertonic saline, urea, demeclocycline), with fluid restriction and hypertonic saline commonly used. Recently vasopressin receptor antagonists, called vaptans, have been introduced as specific and direct therapy of SIADH. Although clinical experience with vaptans is limited at this time, they appear advantageous to patients because there is no need for fluid restriction and the correction of hyponatremia can be achieved comfortably and within a short time. Vaptans also appear to be beneficial for physicians and staff because of their efficiency and reliability. The side effects are thirst, polydipsia and frequency of urination. In any therapy of chronic SIADH it is important to limit the daily increase of serum sodium to less than 8-10 mmol/liter because higher correction rates have been associated with osmotic demyelination. In the case of vaptan treatment, the first 24 h are critical for prevention of an overly rapid correction of hyponatremia and the serum sodium should be measured after 0, 6, 24 and 48 h of treatment. Discontinuation of any vaptan therapy for longer than 5 or 6 days should be monitored to prevent hyponatremic relapse. It may be necessary to taper the vaptan dose or restrict fluid intake or both.
Collapse
|
19
|
Vantyghem MC, Balavoine AS, Wémeau JL, Douillard C. Hyponatremia and antidiuresis syndrome. ANNALES D'ENDOCRINOLOGIE 2011; 72:500-12. [PMID: 22119069 DOI: 10.1016/j.ando.2011.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 12/27/2022]
Abstract
Antidiuretic hormone (ADH), or arginine vasopressin (AVP), is primarily regulated through plasma osmolarity, as well as non-osmotic stimuli including blood volume and stress. Links between water-electrolyte and carbohydrate metabolism have also been recently demonstrated. AVP acts via the intermediary of three types of receptors: V1a, or V1, which exerts vasoconstrictive effects; pituitary gland V1b, or V3, which participates in the secretion of ACTH; and renal V2, which reduces the excretion of pure water by combining with water channels (aquaporin 2). Antidiuresis syndrome is a form of euvolaemic, hypoosmolar hyponatraemia, which is characterised by a negative free water clearance with inappropriate urine osmolality and intracellular hyper-hydration in the absence of renal, adrenal and thyroid insufficiency. Ninety percent of cases of antidiuresis syndrome occur in association with hypersecretion of vasopressin, while vasopressin is undetectable in 10% of cases. Thus the term "antidiuresis syndrome" is more appropriate than the classic name "syndrome of inappropriate ADH secretion" (SIADH). The clinical symptoms, morbidity and mortality of hyponatraemia are related to its severity, as well as to the rapidity of its onset and duration. Even in cases of moderate hyponatraemia that are considered asymptomatic, there is a very high risk of falls due to gait and attention disorders, as well as rhabdomyolysis, which increases the fracture risk. The aetiological diagnosis of hyponatraemia is based on the analysis of calculated or measured plasma osmolality (POsm), as well as blood volume (skin tenting of dehydration, oedema). Hyperglycaemia and hypertriglyceridaemia lead to hyper- and normoosmolar hyponatraemia, respectively. Salt loss of gastrointestinal, renal, cutaneous and sometimes cerebral origin is hypovolaemic, hypoosmolar hyponatraemia (skin tenting), whereas oedema is present with hypervolaemic, hypoosmolar hyponatraemia of heart failure, nephrotic syndrome and cirrhosis. Some endocrinopathies (glucocorticoid deficiency and hypothyroidism) are associated with euvolaemic, hypoosmolar hyponatraemia, which must be distinguished from SIADH. Independent of adrenal insufficiency, isolated hypoaldosteronism can also be accompanied by hypersecretion of vasopressin secondary to hypovolaemia, which responds to mineralocorticoid administration. The causes of SIADH are classic: neoplastic (notably small-cell lung cancer), iatrogenic (particularly psychoactive drugs, chemotherapy), lung and cerebral. Some causes have been recently described: familial hyponatraemia via X-linked recessive disease caused by an activating mutation of the vasopressin 2 receptor; and corticotropin insufficiency related to drug interference between some inhaled glucocorticoids and cytochrome p450 inhibitors, such as the antiretroviral drugs and itraconazole, etc. SIADH in marathon runners exposes them to a risk of hypotonic encephalopathy with fatal cerebral oedema. SIADH treatment is based on water restriction and demeclocycline. V2 receptor antagonists are still not marketed in France. These aquaretics seem effective clinically and biologically, without demonstrated improvement to date of mortality in eu- and hypervolaemic hyponatraemia. Obviously treatment of a corticotropic deficit, even subtle, should not be overlooked, as well as the introduction of fludrocortisone in isolated hypoaldosteronism and discontinuation of iatrogenic drugs.
Collapse
Affiliation(s)
- Marie-Christine Vantyghem
- Service d'endocrinologie et maladies métaboliques, hôpital Huriez, centre hospitalier régional universitaire de Lille, 1, rue Polonovski, 59000 Lille, France.
| | | | | | | |
Collapse
|
20
|
Gankam Kengne F, Nicaise C, Soupart A, Boom A, Schiettecatte J, Pochet R, Brion JP, Decaux G. Astrocytes are an early target in osmotic demyelination syndrome. J Am Soc Nephrol 2011; 22:1834-45. [PMID: 21885671 DOI: 10.1681/asn.2010111127] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abrupt osmotic changes during rapid correction of chronic hyponatremia result in demyelinative brain lesions, but the sequence of events linking rapid osmotic changes to myelin loss is not yet understood. Here, in a rat model of osmotic demyelination syndrome, we found that massive astrocyte death occurred after rapid correction of hyponatremia, delineating the regions of future myelin loss. Astrocyte death caused a disruption of the astrocyte-oligodendrocyte network, rapidly upregulated inflammatory cytokines genes, and increased serum S100B, which predicted clinical manifestations and outcome of osmotic demyelination. These results support a model for the pathophysiology of osmotic brain injury in which rapid correction of hyponatremia triggers apoptosis in astrocytes followed by a loss of trophic communication between astrocytes and oligodendrocytes, secondary inflammation, microglial activation, and finally demyelination.
Collapse
Affiliation(s)
- Fabrice Gankam Kengne
- Erasme University Hospital, Department of General Internal Medicine, Research Unit on Hydromineral Metabolism, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kamel KS, Halperin ML. Managing Overly Rapid Correction of Chronic Hyponatremia: An Ounce of Prevention or a Pound of Cure? J Am Soc Nephrol 2010; 21:2015-6. [DOI: 10.1681/asn.2010101062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|