1
|
Aparicio-Trejo OE, Hernández-Cruz EY, Reyes-Fermín LM, Ceja-Galicia ZA, Pedraza-Chaverri J. The role of redox signaling in mitochondria and endoplasmic reticulum regulation in kidney diseases. Arch Toxicol 2025; 99:1865-1891. [PMID: 40214774 DOI: 10.1007/s00204-025-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/20/2025] [Indexed: 05/18/2025]
Abstract
Kidney diseases are among the fastest worldwide growing pathologies. This growth together with their high mortality rate emphasizes the importance of generating vital information about the mechanism involved in their pathophysiology to determine possible therapeutic targets. Recently, mitochondrial damage and their implication in the reactive oxygen spices (ROS) signaling and redox homeostasis have emerged as a hub point in the pathologic mechanism involved in renal pathologies. ROS in low levels are necessary to maintain cell processes as well as the mitochondria homeostasis and its association with other organelles, especially the with the endoplasmic reticulum (ER). However, the information about how redox signaling interacts and interferes with other cellular processes and the mechanism involved has not been fully integrated. Furthermore, in higher concentrations, these ROS promotes pathologic pathways linked to renal disease progression like, mitochondrial biogenesis reduction, ER stress, calcium overload, inflammation, cell death and fibrosis. Therefore, the aim of this review is to describe the molecular mechanisms involved in the redox signaling influence on mitochondrial and ER homeostasis, focusing on lipid metabolism and ß-oxidation, mitochondrial biogenesis, inflammations, ER stress and calcium homeostasis, as well as the effects of these alteration in the genesis and development of renal disease, with emphasis in acute kidney injury (AKI) and chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico
| | | | - Laura María Reyes-Fermín
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
2
|
Shen Y, Yang M, Zhao S, Zhang R, Lei X, Dong W. The protective role of resveratrol on hyperoxia-induced renal injury in neonatal rat by activating the SIRT1/PGC-1α signaling pathway. Eur J Pharmacol 2025; 993:177364. [PMID: 39947344 DOI: 10.1016/j.ejphar.2025.177364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Supplemental oxygen is commonly used to treat newborns with respiratory disorders. It has been explored that hyperoxia increases oxidative stress, and have the potential adverse effects on developing organs. Mitochondrial biogenesis plays a crucial role in maintaining mitochondrial homeostasis, and resveratrol (Res) has its unique advantage in promoting mitochondrial biogenesis. However, the molecular mechanisms controlling mitochondrial biogenesis in hyperoxia-induced kidney injury remain unclear. The aim of this study was to evaluate the protective effect and it's mechanisms of Res on hyperoxia-induced kidney injury in neonatal rats. METHODS Sprague-Dawley rats were housed in normoxia or hyperoxia (85% O2) and randomized to receive saline, dimethyl sulfoxide, and Res administered intraperitoneally from postnatal days 1∼14(All medicine is scheduled to be given at six o'clock every afternoon). Split the rats into six groups, and on postnatal days 1, 7 and 14, kidney samples were acquired for HE staining and PAS staining to assess kidney development, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to detect apoptosis, and real-time quantitative polymerase chain reaction and immunoblotting to detect the expression levels of SIRT1, PGC-1α, NRF1, NRF2 and TFAM. RESULTS Hyperoxia induced tubular and glomerular injury, increased renal tissue apoptosis, decreased Silent information regulator 2-related enzyme 1(SIRT1), Peroxisome proliferator-activated receptor-γ coactivator-1α(PGC-1α), nuclear respiratory factor 1(Nrf1), Nrf2, mitochondrial transcription factor A (TFAM) protein levels in the kidney, and inhibited TFAM mRNA expression in mitochondria, diminished ND1 copy number and ND4/ND1 ratio. In contrast, Res reduced renal injury and attenuated renal tissue apoptosis in neonatal rats and increased the levels of the corresponding indexes. CONCLUSIONS Res protects neonatal rats from hyperoxia-induced kidney injury by promoting mitochondrial biogenesis, possibly in part through activation of the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, People's Republic of China
| | - Menghan Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, People's Republic of China
| | - Shuai Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, People's Republic of China
| | - Rong Zhang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, People's Republic of China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, People's Republic of China.
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China; Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
Mandal D, Akhtar N, Shafi S, Gupta J. Phytoestrogens and Sirtuin Activation for Renal Protection: A Review of Potential Therapeutic Strategies. PLANTA MEDICA 2025; 91:146-166. [PMID: 39626791 DOI: 10.1055/a-2464-4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Significant health and socio-economic challenges are posed by renal diseases, leading to millions of deaths annually. The costs associated with treating and caring for patients with renal diseases are considerable. Current therapies rely on synthetic drugs that often come with side effects. However, phytoestrogens, natural compounds, are emerging as promising renal protective agents. They offer a relatively safe, effective, and cost-efficient alternative to existing therapies. Phytoestrogens, being structurally similar to 17-β-estradiol, bind to estrogen receptors and produce both beneficial and, in some cases, harmful health effects. The activation of sirtuins has shown promise in mitigating fibrosis and inflammation in renal tissues. Specifically, SIRT1, which is a crucial regulator of metabolic activities, plays a role in protecting against nephrotoxicity, reducing albuminuria, safeguarding podocytes, and lowering reactive oxygen species in diabetic glomerular injury. Numerous studies have highlighted the ability of phytoestrogens to activate sirtuins, strengthen antioxidant defense, and promote mitochondrial biogenesis, playing a vital role in renal protection during kidney injury. These findings support further investigation into the potential role of phytoestrogens in renal protection. This manuscript reviews the potential of phytoestrogens such as resveratrol, genistein, coumestrol, daidzein, and formononetin in regulating sirtuin activity, particularly SIRT1, and thereby providing renal protection. Understanding these mechanisms is crucial for designing effective treatment strategies using naturally occurring phytochemicals against renal diseases.
Collapse
Affiliation(s)
- Debojyoti Mandal
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| | - Sana Shafi
- Molecular Medicine & Pathology (MMP) Matauranga Hauora, Faculty of Medical and Health Sciences Waipapa Taumata Rau, University of Auckland, Aotearoa, New Zealand
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India
| |
Collapse
|
4
|
Thuy Linh H, Nakade Y, Wada T, Iwata Y. The Potential Mechanism of D-Amino Acids - Mitochondria Axis in the Progression of Diabetic Kidney Disease. Kidney Int Rep 2025; 10:343-354. [PMID: 39990887 PMCID: PMC11843130 DOI: 10.1016/j.ekir.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and stands out as the leading cause of end-stage renal disease worldwide. There is increasing evidence that mitochondrial dysfunction, including impaired mitochondrial biogenesis, dynamics, and oxidative stress, contributes to the development and progression of DKD. D-amino acids (D-AAs), which are enantiomers of L-AAs, have recently been detected in various living organisms and are acknowledged to play important roles in numerous physiological processes in the human body. Accumulating evidence demonstrates that D-AA levels in blood or urine could serve as useful biomarkers for reflecting renal function. The physiological roles of D-AAs are implicated in the regulation of cellular proliferation, oxidative stress, generation of reactive oxygen species (ROS), and innate immunity. This article reviews current evidence relating to D-AAs and mitochondrial dysfunction and proposes a potential interaction and contribution of the D-AAs-mitochondria axis in DKD pathophysiology and progression. This insight could provide novel therapeutic approaches for preventing or ameliorating DKD based on this biological axis.
Collapse
Affiliation(s)
- Hoang Thuy Linh
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| | - Yusuke Nakade
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
- Department of Clinical Laboratory, Kanazawa University, Japan
| | - Takashi Wada
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| | - Yasunori Iwata
- Department of Nephrology and Rheumatology, Kanazawa University, Japan
| |
Collapse
|
5
|
Xu W, Zhu Y, Wang S, Liu J, Li H. From Adipose to Ailing Kidneys: The Role of Lipid Metabolism in Obesity-Related Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:1540. [PMID: 39765868 PMCID: PMC11727289 DOI: 10.3390/antiox13121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Obesity has emerged as a significant public health crisis, closely linked to the pathogenesis and progression of chronic kidney disease (CKD). This review explores the intricate relationship between obesity-induced lipid metabolism disorders and renal health. We discuss how excessive free fatty acids (FFAs) lead to lipid accumulation in renal tissues, resulting in cellular lipotoxicity, oxidative stress, and inflammation, ultimately contributing to renal injury. Key molecular mechanisms, including the roles of transcriptional regulators like PPARs and SREBP-1, are examined for their implications in lipid metabolism dysregulation. The review also highlights the impact of glomerular and tubular lipid overload on kidney pathology, emphasizing the roles of podocytes and tubular cells in maintaining kidney function. Various therapeutic strategies targeting lipid metabolism, including pharmacological agents such as statins and SGLT2 inhibitors, as well as lifestyle modifications, are discussed for their potential to mitigate CKD progression in obese individuals. Future research directions are suggested to better understand the mechanisms linking lipid metabolism to kidney disease and to develop personalized therapeutic approaches. Ultimately, addressing obesity-related lipid metabolism disorders may enhance kidney health and improve outcomes for individuals suffering from CKD.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Zhu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Song J, Zhao A, Li R, Luo Y, Dong Y, Wang C, Zhang T, Deng J, Qi X, Guan Z, He Y. Association of PPARGC1A gene polymorphism and mtDNA methylation with coal-burning fluorosis: a case-control study. BMC Genomics 2024; 25:908. [PMID: 39350036 PMCID: PMC11441093 DOI: 10.1186/s12864-024-10819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Coal-burning fluorosis is a chronic poisoning resulting from the prolonged use of locally available high-fluoride coal for heating and cooking. Prolonged fluoride exposure has been demonstrated to decrease PPARGC1A levels. Therefore, this case-control aims to evaluate the genetic association of PPARGC1A gene polymorphisms and methylation of the mitochondrial D-loop region with coal-burning fluorosis. RESULT The results showed that the TT genotype at rs13131226 and the AA genotype at rs1873532 increased the risk of coal-burning fluorosis (OR = 1.84, P = 0.004; OR = 1.97, P = 0.007), the CT and CC genotypes at rs7665116 decreased the risk of coal-burning fluorosis (OR = 0.54, P = 0.003). The TT genotype at the rs2970847 site and the AA genotype at the rs2970870 site increase the risk of developing skeletal fluorosis (OR = 4.12, P = 0.003; OR = 2.22, P = 0.011). Haplotype AG constructed by rs3736265-rs1873532 increased the risk of the prevalence of coal-burning fluorosis (OR = 1.465, P = 0.005); CG decreased the risk of the prevalence of coal-burning fluorosis (OR = 0.726, P = 0.020). Haplotype CGGT constructed by rs6821591-rs768695-rs3736265-rs2970847 increased the risk of the prevalence of skeletal fluorosis (OR = 1.558, P = 0.027). A 1% increase in CpG_4 methylation levels in the mtDNA D-loop region is associated with a 2.3% increase in the risk of coal-burning fluorosis. Additionally. There was a significant interaction between rs13131226 and rs1873532; CpG_4 and CpG_8.9; rs13131224,rs6821591 and rs7665116 were observed in the occurrence of fluorosis in the Guizhou population (χ2 = 16.917, P < 0.001; χ2 = 21.198, P < 0.001; χ2 = 36.078, P < 0.001). CONCLUSION PPARGC1A polymorphisms rs13131226 and rs1873532 and the mitochondrial DNA D-loop methylation site CpG_4 have been associated with an increased risk of fluorosis, conversely polymorphism rs7665116 was associated with a decreased risk of fluorosis. Polymorphisms rs2970870 were associated with increased risk of skeletal fluorosis, and polymorphism rs2970847 was associated with decreased risk of skeletal fluorosis. These SNPs and CpG can be used as potential targets to assess fluorosis risk.
Collapse
Affiliation(s)
- Juhui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ansu Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruichao Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yunyan Luo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yangting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chanjuan Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
7
|
Kazeminia S, Eirin A. Role of mitochondria in endogenous renal repair. Clin Sci (Lond) 2024; 138:963-973. [PMID: 39076039 PMCID: PMC11410300 DOI: 10.1042/cs20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Renal tubules have potential to regenerate and repair after mild-to-moderate injury. Proliferation of tubular epithelial cells represents the initial step of this reparative process. Although for many years, it was believed that proliferating cells originated from a pre-existing intra-tubular stem cell population, there is now consensus that surviving tubular epithelial cells acquire progenitor properties to regenerate the damaged kidney. Scattered tubular-like cells (STCs) are dedifferentiated adult renal tubular epithelial cells that arise upon injury and contribute to renal self-healing and recovery by replacing lost neighboring tubular epithelial cells. These cells are characterized by the co-expression of the stem cell surface markers CD133 and CD24, as well as mesenchymal and kidney injury markers. Previous studies have shown that exogenous delivery of STCs ameliorates renal injury and dysfunction in murine models of acute kidney injury, underscoring the regenerative potential of this endogenous repair system. Although STCs contain fewer mitochondria than their surrounding terminally differentiated tubular epithelial cells, these organelles modulate several important cellular functions, and their integrity and function are critical to preserve the reparative capacity of STCs. Recent data suggest that the microenviroment induced by cardiovascular risk factors, such as obesity, hypertension, and renal ischemia may compromise STC mitochondrial integrity and function, limiting the capacity of these cells to repair injured renal tubules. This review summarizes current knowledge of the contribution of STCs to kidney repair and discusses recent insight into the key role of mitochondria in modulating STC function and their vulnerability in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Sara Kazeminia
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
| | - Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, U.S.A
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, U.S.A
| |
Collapse
|
8
|
Peng X, Ni H, Kuang B, Wang Z, Hou S, Gu S, Gong N. Sirtuin 3 in renal diseases and aging: From mechanisms to potential therapies. Pharmacol Res 2024; 206:107261. [PMID: 38917912 DOI: 10.1016/j.phrs.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.
Collapse
Affiliation(s)
- Xuan Peng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haiqiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiqi Gu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
9
|
Yang K, Li T, Geng Y, Zou X, Peng F, Gao W. The role of mitophagy in the development of chronic kidney disease. PeerJ 2024; 12:e17260. [PMID: 38680884 PMCID: PMC11056108 DOI: 10.7717/peerj.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Chronic kidney disease (CKD) represents a significant global health concern, with renal fibrosis emerging as a prevalent and ultimate manifestation of this condition. The absence of targeted therapies presents an ongoing and substantial challenge. Accumulating evidence suggests that the integrity and functionality of mitochondria within renal tubular epithelial cells (RTECs) often become compromised during CKD development, playing a pivotal role in the progression of renal fibrosis. Mitophagy, a specific form of autophagy, assumes responsibility for eliminating damaged mitochondria to uphold mitochondrial equilibrium. Dysregulated mitophagy not only correlates with disrupted mitochondrial dynamics but also contributes to the advancement of renal fibrosis in CKD. While numerous studies have examined mitochondrial metabolism, ROS (reactive oxygen species) production, inflammation, and apoptosis in kidney diseases, the precise pathogenic mechanisms underlying mitophagy in CKD remain elusive. The exact mechanisms through which modulating mitophagy mitigates renal fibrosis, as well as its influence on CKD progression and prognosis, have not undergone systematic investigation. The role of mitophagy in AKI has been relatively clear, but the role of mitophagy in CKD is still rare. This article presents a comprehensive review of the current state of research on regulating mitophagy as a potential treatment for CKD. The objective is to provide fresh perspectives, viable strategies, and practical insights into CKD therapy, thereby contributing to the enhancement of human living conditions and patient well-being.
Collapse
Affiliation(s)
- Kexin Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Ting Li
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Yingpu Geng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiangyu Zou
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Fujun Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Wei Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
10
|
Rossi A, Asthana A, Riganti C, Sedrakyan S, Byers LN, Robertson J, Senger RS, Montali F, Grange C, Dalmasso A, Porporato PE, Palles C, Thornton ME, Da Sacco S, Perin L, Ahn B, McCully J, Orlando G, Bussolati B. Mitochondria Transplantation Mitigates Damage in an In Vitro Model of Renal Tubular Injury and in an Ex Vivo Model of DCD Renal Transplantation. Ann Surg 2023; 278:e1313-e1326. [PMID: 37450698 PMCID: PMC10631499 DOI: 10.1097/sla.0000000000006005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
OBJECTIVES To test whether mitochondrial transplantation (MITO) mitigates damage in 2 models of acute kidney injury (AKI). BACKGROUND MITO is a process where exogenous isolated mitochondria are taken up by cells. As virtually any morbid clinical condition is characterized by mitochondrial distress, MITO may find a role as a treatment modality in numerous clinical scenarios including AKI. METHODS For the in vitro experiments, human proximal tubular cells were damaged and then treated with mitochondria or placebo. For the ex vivo experiments, we developed a non-survival ex vivo porcine model mimicking the donation after cardiac death renal transplantation scenario. One kidney was treated with mitochondria, although the mate organ received placebo, before being perfused at room temperature for 24 hours. Perfusate samples were collected at different time points and analyzed with Raman spectroscopy. Biopsies taken at baseline and 24 hours were analyzed with standard pathology, immunohistochemistry, and RNA sequencing analysis. RESULTS In vitro, cells treated with MITO showed higher proliferative capacity and adenosine 5'-triphosphate production, preservation of physiological polarization of the organelles and lower toxicity and reactive oxygen species production. Ex vivo, kidneys treated with MITO shed fewer molecular species, indicating stability. In these kidneys, pathology showed less damage whereas RNAseq analysis showed modulation of genes and pathways most consistent with mitochondrial biogenesis and energy metabolism and downregulation of genes involved in neutrophil recruitment, including IL1A, CXCL8, and PIK3R1. CONCLUSIONS MITO mitigates AKI both in vitro and ex vivo.
Collapse
Affiliation(s)
- Andrea Rossi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC
| | - Chiara Riganti
- Department of Oncology, University of Torino, University of Turin, Turin, Italy
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lori Nicole Byers
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC
| | - John Robertson
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA
- DialySensors Inc., Blacksburg, VA
| | - Ryan S. Senger
- DialySensors Inc., Blacksburg, VA
- Department of Biological Systems Engineering, College of Life Sciences and Agriculture, Virginia Tech, Blacksburg, VA
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA
| | | | - Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessia Dalmasso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo E. Porporato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Chris Palles
- J. Crayton Pruitt Family, Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Matthew E. Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Bumsoo Ahn
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC
| | - James McCully
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Ma L, Zhang L, Li J, Zhang X, Xie Y, Li X, Yang B, Yang H. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. Mol Med 2023; 29:148. [PMID: 37907885 PMCID: PMC10617243 DOI: 10.1186/s10020-023-00745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnormal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological alterations of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochondria originated from microorganisms and share comparable biological characteristics with the microbiota found in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial function in the occurrence and development of metabolic disorders. The gut microbiome's metabolites may play a vital role in this communication. However, the relationship between the gut microbiome and mitochondrial function in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabolites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing DKD based on this biological axis in the future.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Yiran Xie
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaochen Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China.
| |
Collapse
|
12
|
Guan S, Wang Z, Zhang R, Chen S, Bu X, Lu J. 3-MCPD Induced Mitochondrial Damage of Renal Cells Via the Rhythmic Protein BMAL1 Targeting SIRT3/SOD2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14351-14364. [PMID: 37750480 DOI: 10.1021/acs.jafc.3c04358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Biorhythm regulates a variety of physiological functions and enables organisms to adapt to changing environments. 3-Monochloro-1,2-propanediol (3-MCPD) is a common food thermal processing contaminant, and the kidney is its toxic target organ. However, the nephrotoxicity mechanism of 3-MCPD has not been fully elucidated. In the study, we found that 3-MCPD caused mitochondrial damage in renal cells by inhibiting the SIRT3/SOD2 pathway. Further, we found that 3-MCPD could interfere with rhythm protein BMAL1 expression at protein and mRNA levels in mice kidney and NRK-52E cells. Simultaneously, the balance of the daily oscillation of SIRT3/SOD2 pathway proteins was impeded under 3-MCPD treatment. To determine the role of BAML1 in mitochondrial damage, we overexpressed the BMAL1 protein. The data showed that BMAL1 overexpression upregulated SIRT3 and SOD2 expression and attenuated mitochondrial damage caused by 3-MCPD. These results indicated that 3-MCPD inhibited the SIRT3/SOD2 pathway by affecting the expression of the rhythm protein BMAL1, thereby inducing mitochondrial damage in renal cells. Taken together, our work reveals that 3-MCPD may possess a toxic effect via circadian clock mechanisms.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ziyi Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shanshan Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xiujuan Bu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
13
|
Li Y, Gu W, Hepokoski M, Pham H, Tham R, Kim YC, Simonson TS, Singh P. Energy Metabolism Dysregulation in Chronic Kidney Disease. KIDNEY360 2023; 4:1080-1094. [PMID: 37222594 PMCID: PMC10476685 DOI: 10.34067/kid.0000000000000153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
Key Points There is significant enrichment in metabolic pathways in early stages in the subtotal nephrectomy model of CKD. Proximal tubular mitochondrial respiration is suppressed likely from mitochondrial dysfunction in substrate utilization and ATP synthesis. There is significant suppression of pyruvate dehydrogenase and increased glycolysis in proximal tubules. Background CKD is a significant contributor to morbidity and mortality. A better understanding of mechanisms underlying CKD progression is indispensable for developing effective therapies. Toward this goal, we addressed specific gaps in knowledge regarding tubular metabolism in the pathogenesis of CKD using the subtotal nephrectomy (STN) model in mice. Methods Weight- and age‐matched male 129X1/SvJ mice underwent sham or STN surgeries. We conducted serial GFR and hemodynamic measurements up to 16 weeks after sham and STN surgery and established the 4-week time point for subsequent studies. Results For a comprehensive assessment of renal metabolism, we conducted transcriptomic analyses, which showed significant enrichment of pathways involved in fatty acid metabolism, gluconeogenesis, glycolysis, and mitochondrial metabolism in STN kidneys. Expression of rate-limiting fatty acid oxidation and glycolytic enzymes was increased in STN kidneys, and proximal tubules in STN kidneys exhibited increased functional glycolysis but decreased mitochondrial respiration, despite an increase in mitochondrial biogenesis. Assessment of the pyruvate dehydrogenase complex pathway showed significant suppression of pyruvate dehydrogenase, suggesting decreased provision of acetyl CoA from pyruvate for the citric acid cycle to fuel mitochondrial respiration. Conclusion Metabolic pathways are significantly altered in response to kidney injury and may play an important role in the disease progression.
Collapse
Affiliation(s)
- Ying Li
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, California
| | - Mark Hepokoski
- VA San Diego Healthcare System, San Diego, California
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, California
| | - Hai Pham
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - Rick Tham
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, California
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
14
|
Barbero NM, Oller J, Sanz AB, Ramos AM, Ortiz A, Ruiz-Ortega M, Rayego-Mateos S. Mitochondrial Dysfunction in the Cardio-Renal Axis. Int J Mol Sci 2023; 24:ijms24098209. [PMID: 37175915 PMCID: PMC10179675 DOI: 10.3390/ijms24098209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cardiovascular disease (CVD) frequently complicates chronic kidney disease (CKD). The risk of all-cause mortality increases from 20% to 500% in patients who suffer both conditions; this is referred to as the so-called cardio-renal syndrome (CRS). Preclinical studies have described the key role of mitochondrial dysfunction in cardiovascular and renal diseases, suggesting that maintaining mitochondrial homeostasis is a promising therapeutic strategy for CRS. In this review, we explore the malfunction of mitochondrial homeostasis (mitochondrial biogenesis, dynamics, oxidative stress, and mitophagy) and how it contributes to the development and progression of the main vascular pathologies that could be affected by kidney injury and vice versa, and how this knowledge may guide the development of novel therapeutic strategies in CRS.
Collapse
Affiliation(s)
- Nerea Mendez Barbero
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Jorge Oller
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Ana B Sanz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Adrian M Ramos
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Marta Ruiz-Ortega
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| |
Collapse
|
15
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
16
|
Is bariatric surgery improving mitochondrial function in the renal cells of patients with obesity-induced kidney disease? Pharmacol Res 2022; 185:106488. [DOI: 10.1016/j.phrs.2022.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
17
|
Doke T, Susztak K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol 2022; 32:841-853. [PMID: 35473814 PMCID: PMC9464682 DOI: 10.1016/j.tcb.2022.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
Abstract
More than 800 million people suffer from kidney disease. Genetic studies and follow-up animal models and cell biological experiments indicate the key role of proximal tubule metabolism. Kidneys have one of the highest mitochondrial densities. Mitochondrial biogenesis, mitochondrial fusion and fission, and mitochondrial recycling, such as mitophagy are critical for proper mitochondrial function. Mitochondrial dysfunction can lead to an energetic crisis, orchestrate different types of cell death (apoptosis, necroptosis, pyroptosis, and ferroptosis), and influence cellular calcium levels and redox status. Collectively, mitochondrial defects in renal tubules contribute to epithelial atrophy, inflammation, or cell death, orchestrating kidney disease development.
Collapse
Affiliation(s)
- Tomohito Doke
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Mishra M, Nichols L, Dave AA, Pittman EH, Cheek JP, Caroland AJV, Lotwala P, Drummond J, Bridges CC. Molecular Mechanisms of Cellular Injury and Role of Toxic Heavy Metals in Chronic Kidney Disease. Int J Mol Sci 2022; 23:11105. [PMID: 36232403 PMCID: PMC9569673 DOI: 10.3390/ijms231911105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive disease that affects millions of adults every year. Major risk factors include diabetes, hypertension, and obesity, which affect millions of adults worldwide. CKD is characterized by cellular injury followed by permanent loss of functional nephrons. As injured cells die and nephrons become sclerotic, remaining healthy nephrons attempt to compensate by undergoing various structural, molecular, and functional changes. While these changes are designed to maintain appropriate renal function, they may lead to additional cellular injury and progression of disease. As CKD progresses and filtration decreases, the ability to eliminate metabolic wastes and environmental toxicants declines. The inability to eliminate environmental toxicants such as arsenic, cadmium, and mercury may contribute to cellular injury and enhance the progression of CKD. The present review describes major molecular alterations that contribute to the pathogenesis of CKD and the effects of arsenic, cadmium, and mercury on the progression of CKD.
Collapse
Affiliation(s)
- Manish Mishra
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Larry Nichols
- Department of Pathology and Clinical Sciences Education, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Aditi A. Dave
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Elizabeth H Pittman
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - John P. Cheek
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Anasalea J. V. Caroland
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Purva Lotwala
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - James Drummond
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Christy C. Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| |
Collapse
|
19
|
Avila-Rojas SH, Aparicio-Trejo OE, Sanchez-Guerra MA, Barbier OC. Effects of fluoride exposure on mitochondrial function: Energy metabolism, dynamics, biogenesis and mitophagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103916. [PMID: 35738460 DOI: 10.1016/j.etap.2022.103916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is ubiquitous in the environment. Furthermore, drinking water represents the main source of exposure to fluoride for humans. Interestingly, low fluoride concentrations have beneficial effects on bone and teeth development; however, chronic fluoride exposure has harmful effects on human health. Besides, preclinical studies associate fluoride toxicity with oxidative stress, inflammation, and apoptosis. On the other hand, it is well-known that mitochondria play a key role in reactive oxygen species production. By contrast, fluoride's effect on processes such as mitochondrial dynamics, biogenesis and mitophagy are little known. These processes modulate the size, content, and distribution of mitochondria and their depuration help to counter the reactive oxygen species production and cytochrome c release, thereby allowing cell survival. However, a maladaptive response could enhance fluoride-induced toxicity. The present review gives a brief account of fluoride-induced mitochondrial alterations on soft and hard tissues, including liver, reproductive organs, heart, brain, lung, kidney, bone, and tooth.
Collapse
Affiliation(s)
- Sabino Hazael Avila-Rojas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| | | | - Marco Antonio Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico 1100, Mexico.
| | - Olivier Christophe Barbier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| |
Collapse
|
20
|
Chen KH, Chou LF, Hung CC, Tang HY, Cheng ML, Yang HY, Hsu HH, Tian YC, Yang CW. Integrated Metabolomic and Transcriptomic Analysis of Acute Kidney Injury Caused by Leptospira Infection. Pathogens 2022; 11:pathogens11070764. [PMID: 35890009 PMCID: PMC9316537 DOI: 10.3390/pathogens11070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Renal leptospirosis caused by leptospiral infection is characterised by tubulointerstitial nephritis and tubular dysfunction, resulting in acute and chronic kidney injury. Metabolomic and transcriptomic data from a murine model of Leptospira infection were analysed to determine whether metabolomic data from urine were associated with transcriptome changes relevant to kidney injury caused by Leptospira infection. Our findings revealed that 37 metabolites from the urine of L. interrogans-infected mice had significantly different concentrations than L. biflexa-infected and non-infected control mice. Of these, urinary L-carnitine and acetyl-L-carnitine levels were remarkably elevated in L. interrogans-infected mice. Using an integrated pathway analysis, we found that L-carnitine and acetyl-L-carnitine were involved in metabolic pathways such as fatty acid activation, the mitochondrial L-carnitine shuttle pathway, and triacylglycerol biosynthesis that were enriched in the renal tissues of the L. interrogans-infected mice. This study highlights that L-carnitine and acetyl-L-carnitine are implicated in leptospiral infection-induced kidney injury, suggesting their potential as metabolic modulators.
Collapse
Affiliation(s)
- Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-H.C.); (L.-F.C.); (C.-C.H.); (H.-Y.Y.); (H.-H.H.); (Y.-C.T.)
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; (H.-Y.T.); (M.-L.C.)
- Metabolomics Core Laboratory, Chang Gung University, Taoyuan 333, Taiwan
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-H.C.); (L.-F.C.); (C.-C.H.); (H.-Y.Y.); (H.-H.H.); (Y.-C.T.)
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-H.C.); (L.-F.C.); (C.-C.H.); (H.-Y.Y.); (H.-H.H.); (Y.-C.T.)
| | - Hsiang-Yu Tang
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; (H.-Y.T.); (M.-L.C.)
- Metabolomics Core Laboratory, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; (H.-Y.T.); (M.-L.C.)
- Metabolomics Core Laboratory, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-H.C.); (L.-F.C.); (C.-C.H.); (H.-Y.Y.); (H.-H.H.); (Y.-C.T.)
| | - Hsiang-Hao Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-H.C.); (L.-F.C.); (C.-C.H.); (H.-Y.Y.); (H.-H.H.); (Y.-C.T.)
| | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-H.C.); (L.-F.C.); (C.-C.H.); (H.-Y.Y.); (H.-H.H.); (Y.-C.T.)
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (K.-H.C.); (L.-F.C.); (C.-C.H.); (H.-Y.Y.); (H.-H.H.); (Y.-C.T.)
- Correspondence:
| |
Collapse
|
21
|
Rho-associated, coiled-coil-containing protein kinase 1 regulates development of diabetic kidney disease via modulation of fatty acid metabolism. Kidney Int 2022; 102:536-545. [PMID: 35597365 DOI: 10.1016/j.kint.2022.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022]
Abstract
Dysregulation of fatty acid utilization is increasingly recognized as a significant component of diabetic kidney disease. Rho-associated, coiled-coil-containing protein kinase (ROCK) is activated in the diabetic kidney, and studies over the past decade have illuminated ROCK signaling as an essential pathway in diabetic kidney disease. Here, we confirmed the distinct role of ROCK1, an isoform of ROCK, in fatty acid metabolism using glomerular mesangial cells and ROCK1 knockout mice. Mesangial cells with ROCK1 deletion were protected from mitochondrial dysfunction and redox imbalance driven by transforming growth factor β, a cytokine upregulated in diabetic glomeruli. We found that high-fat diet-induced obese ROCK1 knockout mice exhibited reduced albuminuria and histological abnormalities along with the recovery of impaired fatty acid utilization and mitochondrial fragmentation. Mechanistically, we found that ROCK1 regulates the induction of critical mediators in fatty acid metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1α, carnitine palmitoyltransferase 1, and widespread program-associated cellular metabolism. Thus, our findings highlight ROCK1 as an important regulator of energy homeostasis in mesangial cells in the overall pathogenesis of diabetic kidney disease.
Collapse
|
22
|
Liu S, Yuan Y, Xue Y, Xing C, Zhang B. Podocyte Injury in Diabetic Kidney Disease: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol 2022; 10:832887. [PMID: 35321238 PMCID: PMC8935076 DOI: 10.3389/fcell.2022.832887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Podocytes are a crucial cellular component in maintaining the glomerular filtration barrier, and their injury is the major determinant in the development of albuminuria and diabetic kidney disease (DKD). Podocytes are rich in mitochondria and heavily dependent on them for energy to maintain normal functions. Emerging evidence suggests that mitochondrial dysfunction is a key driver in the pathogenesis of podocyte injury in DKD. Impairment of mitochondrial function results in an energy crisis, oxidative stress, inflammation, and cell death. In this review, we summarize the recent advances in the molecular mechanisms that cause mitochondrial damage and illustrate the impact of mitochondrial injury on podocytes. The related mitochondrial pathways involved in podocyte injury in DKD include mitochondrial dynamics and mitophagy, mitochondrial biogenesis, mitochondrial oxidative phosphorylation and oxidative stress, and mitochondrial protein quality control. Furthermore, we discuss the role of mitochondria-associated membranes (MAMs) formation, which is intimately linked with mitochondrial function in podocytes. Finally, we examine the experimental evidence exploring the targeting of podocyte mitochondrial function for treating DKD and conclude with a discussion of potential directions for future research in the field of mitochondrial dysfunction in podocytes in DKD.
Collapse
Affiliation(s)
- Simeng Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi Xue
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Pukou Branch of JiangSu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| |
Collapse
|
23
|
Chen Y, Yang Y, Liu Z, He L. Adiponectin promotes repair of renal tubular epithelial cells by regulating mitochondrial biogenesis and function. Metabolism 2022; 128:154959. [PMID: 34953916 DOI: 10.1016/j.metabol.2021.154959] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mitochondrial biogenesis and dysfunction are associated with renal tubular epithelial cell injury and the pathophysiological development of diabetic nephropathy (DN). Adiponectin (APN) is a plasma hormone protein specifically secreted by adipocytes. In the present study, we studied the effects of APN on mitochondrial biogenesis and function in renal tubular epithelial cells and examined the mechanisms underlying its actions. MATERIALS A rat model of type 2 diabetes mellitus (T2DM) was established using streptozotocin (STZ), and an NRK-52E culture model exposed to high glucose was also used. We found that APN treatment alleviated kidney histopathological injury in T2DM rats, reduced fasting blood glucose (FBG) and postprandial blood glucose (PBG) levels, maintained stable animal weight, promoted cell viability, inhibited apoptosis and the formation of autophagosomes, and also increased mitochondrial mass, mitochondrial DNA (mtDNA) content and mitochondrial membrane potential (MMP) in vivo and in vitro. RESULTS We found that the expression of AdipoR1/CREB/PGC-1α/TFAM pathway proteins and respiratory chain complex subunits CO1, CO2, CO3, ATP6 and ATP8 were significantly increased after APN treatment. We also found that inhibition of cAMP response element binding protein (CREB) weakened the effects of APN in NRK-52E cells treated with high glucose. Coimmunoprecipitation experiments showed that AdipoR1 interacted with CREB. CONCLUSION APN promoted mitochondrial biogenesis and function in renal tubular epithelial cells by regulating the AdipoR1/CREB/PGC-1α/TFAM pathway. APN has the potential to serve as an effective drug for the treatment of DN.
Collapse
Affiliation(s)
- Yinyin Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410000, PR China; Changsha Clinical Research Center for Kidney Disease, Changsha, Hunan 410000, PR China; Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, PR China
| | - Yiya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410000, PR China; Changsha Clinical Research Center for Kidney Disease, Changsha, Hunan 410000, PR China; Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, PR China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, PR China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, PR China.
| |
Collapse
|
24
|
PGC-1α inhibits the NLRP3 inflammasome via preserving mitochondrial viability to protect kidney fibrosis. Cell Death Dis 2022; 13:31. [PMID: 35013155 PMCID: PMC8748677 DOI: 10.1038/s41419-021-04480-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
The NLRP3 inflammasome is activated by mitochondrial damage and contributes to kidney fibrosis. However, it is unknown whether PGC-1α, a key mitochondrial biogenesis regulator, modulates NLRP3 inflammasome in kidney injury. Primary renal tubular epithelial cells (RTECs) were isolated from C57BL/6 mice. The NLRP3 inflammasome, mitochondrial dynamics and morphology, oxidative stress, and cell injury markers were examined in RTECs treated by TGF-β1 with or without Ppargc1a plasmid, PGC-1α activator (metformin), and siPGC-1α. In vivo, adenine-fed and unilateral ureteral obstruction (UUO) mice were treated with metformin. In vitro, TGF-β1 treatment to RTECs suppressed the expressions of PGC-1α and mitochondrial dynamic-related genes. The NLRP3 inflammasome was also activated and the expression of fibrotic and cell injury markers was increased. PGC-1α induction with the plasmid and metformin improved mitochondrial dynamics and morphology and attenuated the NLRP3 inflammasome and cell injury. The opposite changes were observed by siPGC-1α. The oxidative stress levels, which are inducers of the NLRP3 inflammasome, were increased and the expression of TNFAIP3, a negative regulator of NLRP3 inflammasome regulated by PGC-1α, was decreased by TGF-β1 and siPGC-1α. However, PGC-1α restoration reversed these alterations. In vivo, adenine-fed and UUO mice models showed suppression of PGC-1α and TNFAIP3 and dysregulated mitochondrial dynamics. Moreover, the activation of oxidative stress and NLRP3 inflammasome, and kidney fibrosis were increased in these mice. However, these changes were significantly reversed by metformin. This study demonstrated that kidney injury was ameliorated by PGC-1α-induced inactivation of the NLRP3 inflammasome via modulation of mitochondrial viability and dynamics.
Collapse
|
25
|
Zou M, Chen Y, Zheng Z, Sheng S, Jia Y, Wang X, Ren S, Yang Y, Li X, Dong W, Guan M, Zhang Q, Xue Y. High-Salt Attenuates the Efficacy of Dapagliflozin in Tubular Protection by Impairing Fatty Acid Metabolism in Diabetic Kidney Disease. Front Pharmacol 2022; 12:741087. [PMID: 34987387 PMCID: PMC8720966 DOI: 10.3389/fphar.2021.741087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
High-salt intake leads to kidney damage and even limits the effectiveness of drugs. However, it is unclear whether excessive intake of salt affects renal tubular energy metabolism and the efficacy of dapagliflozin on renal function in diabetic kidney disease (DKD). In this study, we enrolled 350 DKD patients and examined the correlation between sodium level and renal function, and analyzed influencing factors. The results demonstrated that patients with macroalbuminuria have higher 24 h urinary sodium levels. After establishment of type 2 diabetes mellitus model, the animals received a high-salt diet or normal-salt diet. In the presence of high-salt diet, the renal fibrosis was aggravated with fatty acid metabolism dysregulation. Furthermore, Na+/K+-ATPase expression was up-regulated in the renal tubules of diabetic mice, while the fatty acid metabolism was improved by inhibiting Na+/K+-ATPase of renal tubular epithelial cells. Of note, the administration with dapagliflozin improved renal fibrosis and enhanced fatty acid metabolism. But high salt weakened the above-mentioned renal protective effects of dapagliflozin in DKD. Similar results were recapitulated in vitro after incubating proximal tubular epithelial cells in high-glucose and high-salt medium. In conclusion, our results indicate that high salt can lead to fatty acid metabolism disorders by increasing Na+/K+-ATPase expression in the renal tubules of DKD. High salt intake diminishes the reno-protective effect of dapagliflozin in DKD.
Collapse
Affiliation(s)
- Meina Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanrong Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyue Sheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Jia
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyu Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shijing Ren
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanling Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhui Dong
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Clinicopathological Features of Mitochondrial Nephropathy. Kidney Int Rep 2022; 7:580-590. [PMID: 35257070 PMCID: PMC8897298 DOI: 10.1016/j.ekir.2021.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The clinicopathologic characteristics of nephropathy associated with mitochondrial disease (MD) remain unknown. We retrospectively analyzed a cohort of patients with proteinuria, decreased glomerular filtration rate, or Fanconi syndrome who had a genetic mutation confirmed as the cause of MD, defined as mitochondrial nephropathy. Methods This nationwide survey included 757 nephrology sections throughout Japan, and consequently, data on 81 cases of mitochondrial nephropathy were collected. Results The most common renal manifestation observed during the disease course was proteinuria. Hearing loss was the most common comorbidity; a renal-limited phenotype was observed only in mitochondrial DNA (mtDNA) point mutation and COQ8B mutation cases. We found a median time delay of 6.0 years from onset of renal manifestations to diagnosis. Focal segmental glomerular sclerosis (FSGS) was the most common pathologic diagnosis. We then focused on 63 cases with the m.3243A>G mutation. The rate of cases with diabetes was significantly higher among adult-onset cases than among childhood-onset cases. Pathologic diagnoses were more variable in adult-onset cases, including diabetic nephropathy, nephrosclerosis, tubulointerstitial nephropathy, and minor glomerular abnormalities. During the median observation period of 11.0 years from the first onset of renal manifestations in patients with m.3243A>G, renal replacement therapy (RRT) was initiated in 50.8% of patients. Death occurred in 25.4% of the patients during the median observation period of 12.0 years. The median estimated glomerular filtration rate (eGFR) decline was 5.4 ml/min per 1.73 m2/yr in the cases, especially 8.3 ml/min per 1.73 m2/yr in FSGS cases, with m.3243A>G. Conclusion Here, we described the clinicopathologic features and prognosis of mitochondrial nephropathy using large-scale data.
Collapse
|
27
|
Fang X, Wu H, Wei J, Miao R, Zhang Y, Tian J. Research progress on the pharmacological effects of berberine targeting mitochondria. Front Endocrinol (Lausanne) 2022; 13:982145. [PMID: 36034426 PMCID: PMC9410360 DOI: 10.3389/fendo.2022.982145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Berberine is a natural active ingredient extracted from the rhizome of Rhizoma Coptidis, which interacts with multiple intracellular targets and exhibits a wide range of pharmacological activities. Previous studies have preliminarily confirmed that the regulation of mitochondrial activity is related to various pharmacological actions of berberine, such as regulating blood sugar and lipid and inhibiting tumor progression. However, the mechanism of berberine's regulation of mitochondrial activity remains to be further studied. This paper summarizes the molecular mechanism of the mitochondrial quality control system and briefly reviews the targets of berberine in regulating mitochondrial activity. It is proposed that berberine mainly regulates glycolipid metabolism by regulating mitochondrial respiratory chain function, promotes tumor cell apoptosis by regulating mitochondrial apoptosis pathway, and protects cardiac function by promoting mitophagy to alleviate mitochondrial dysfunction. It reveals the mechanism of berberine's pharmacological effects from the perspective of mitochondria and provides a scientific basis for the application of berberine in the clinical treatment of diseases.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiaxing Tian,
| |
Collapse
|
28
|
Bicalutamide Exhibits Potential to Damage Kidney via Destroying Complex I and Affecting Mitochondrial Dynamics. J Clin Med 2021; 11:jcm11010135. [PMID: 35011880 PMCID: PMC8745250 DOI: 10.3390/jcm11010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Bicalutamide (Bic) is an androgen deprivation therapy (ADT) for treating prostate cancer, while ADT is potentially associated with acute kidney injury. Previously, we recognized Bic induced renal mitochondria dysfunction in vitro and in vivo via the ROS -HIF1α pathway. Whether OXPHOS complex, as well as mitochondrial dynamics, can be influenced by Bic via modulation of peroxisome proliferator-activated receptor coactivator 1α (PGC1α), NADPH oxidase 4 (Nox4), mitofusins 1/2 (MFN 1/2), optic atrophy 1 (OPA1), and sirtuins (SIRTs) has not been documented. Renal mesangial cell line was treated with Bic (30~60 μM) for the indicated time. SIRTs, complex I, mitochondrial dynamics- and oxidative stress-related proteins were analyzed. Bic dose-dependently reduced mitochondrial potential, but dose- and time-dependently suppressed translocase of the outer mitochondrial membrane member 20 (Tomm 20), complex I activity. Nox4 and glutathione lead to decreased NAD+/NADH ratio, with upregulated superoxide dismutase 2. SIRT1 was initially stimulated and then suppressed, while SIRT3 was time- and dose-dependently downregulated. PGC1α, MFN2, and OPA1 were all upregulated, with MFN1 and pro-fission dynamin-related protein I downregulated. Bic exhibits potential to damage mitochondria via destroying complex I, complex I activity, and mitochondrial dynamics. Long-term treatment with Bic should be carefully followed up.
Collapse
|
29
|
Imasawa T, Claverol S, Lacombe D, Amoedo ND, Rossignol R. Proteomic Study of Low-Birth-Weight Nephropathy in Rats. Int J Mol Sci 2021; 22:10294. [PMID: 34638634 PMCID: PMC8508940 DOI: 10.3390/ijms221910294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The hyperfiltration theory has been used to explain the mechanism of low birth weight (LBW)-related nephropathy. However, the molecular changes in the kidney proteome have not been defined in this disease, and early biomarkers are lacking. We investigated the molecular pathogenesis of LBW rats obtained by intraperitoneal injection of dexamethasone into pregnant animals. Normal-birth-weight (NBW) rats were used as controls. When the rats were four weeks old, the left kidneys were removed and used for comprehensive label-free proteomic studies. Following uninephrectomy, all rats were fed a high-salt diet until 9 weeks of age. Differences in the molecular composition of the kidney cortex were observed at the early step of LBW nephropathy pathogenesis. Untargeted quantitative proteomics showed that proteins involved in energy metabolism, such as oxidative phosphorylation (OXPHOS), the TCA cycle, and glycolysis, were specifically downregulated in the kidneys of LBW rats at four weeks. No pathological changes were detected at this early stage. Pathway analysis identified NEFL2 (NRF2) and RICTOR as potential upstream regulators. The search for biomarkers identified components of the mitochondrial respiratory chain, namely, ubiquinol-cytochrome c reductase complex subunits (UQCR7/11) and ATP5I/L, two components of mitochondrial F1FO-ATP synthase. These findings were further validated by immunohistology. At later stages of the disease process, the right kidneys revealed an increased frequency of focal segmental glomerulosclerosis lesions, interstitial fibrosis and tubular atrophy. Our findings revealed proteome changes in LBW rat kidneys and revealed a strong downregulation of specific mitochondrial respiratory chain proteins, such as UQCR7.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Kidney Center, National Hospital Organization Chiba-Higashi National Hospital, Chiba 260-8712, Japan
- Rare Diseases, Genetics and Metabolism, University of Bordeaux, INSERM U1211, 33000 Bordeaux, France;
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
| | - Stéphane Claverol
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
- Functional Genomics Center, Proteomics Department, University of Bordeaux, 33000 Bordeaux, France
| | - Didier Lacombe
- Rare Diseases, Genetics and Metabolism, University of Bordeaux, INSERM U1211, 33000 Bordeaux, France;
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
| | | | - Rodrigue Rossignol
- Rare Diseases, Genetics and Metabolism, University of Bordeaux, INSERM U1211, 33000 Bordeaux, France;
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
- CELLOMET, CHU Pellegrin, 33300 Bordeaux, France;
| |
Collapse
|
30
|
Li L, Liu S, Zhou Y, Zhao M, Wang Y, Wang C, Lou P, Huang R, Ma L, Lu Y, Fu P, Liu J. Indispensable role of mitochondria in maintaining the therapeutic potential of curcumin in acute kidney injury. J Cell Mol Med 2021; 25:9863-9877. [PMID: 34532973 PMCID: PMC8505835 DOI: 10.1111/jcmm.16934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a serious disease for which effective therapeutic agents are required. The capacity of curcumin (CUR) to resolve renal inflammation/oxidative stress and mitochondrial damage has been reported, but crosstalk between these effects and the consequence of this crosstalk remain elusive. In this study, a hypoxia/reoxygenation (H/R)-induced renal tubular epithelial cell (TEC) injury model and an ischaemia/reperfusion (I/R)-induced mouse AKI model were treated with CUR with or without mitochondrial inhibitors (rotenone and FCCP) or siRNA targeting mitochondrial transcription factor A (TFAM). Changes in mitochondrial function, inflammation, the antioxidant system and related pathways were analysed. In vitro, CUR suppressed NFκB activation and cytokine production and induced NRF2/HO-1 signalling in TECs under H/R conditions. CUR treatment also reduced mitochondrial ROS (mtROS) and mitochondrial fragmentation and enhanced mitochondrial biogenesis, TCA cycle activity and ATP synthesis in damaged TECs. However, the anti-inflammatory and antioxidant effects of CUR in damaged TECs were markedly abolished upon mitochondrial disruption. In vivo, CUR treatment improved renal function and antioxidant protein (NRF2 and SOD2) expression and reduced oxidative stress (8-OHdG), tubular apoptosis/death, cytokine release/macrophage infiltration and mitochondrial damage in the kidneys of AKI mice. In vitro, the anti-inflammatory and antioxidant effects of CUR in damaged kidneys were impaired when mitochondrial function was disrupted. These results suggest mitochondrial damage is a driving factor of renal inflammation and redox imbalance. The therapeutic capacity of CUR in kidneys with AKI is primarily dependent on mitochondrial mechanisms; thus, CUR is a potential therapy for various diseases characterized by mitochondrial damage.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China.,Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Yijie Zhou
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Yizhuo Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Lou
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Rongshuang Huang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Kalantari K, Rosner MH. Recent advances in the pharmacological management of sepsis-associated acute kidney injury. Expert Rev Clin Pharmacol 2021; 14:1401-1411. [PMID: 34493146 DOI: 10.1080/17512433.2021.1978287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Acute kidney injury is a common occurrence in patients with sepsis and portends a high mortality as well as increased morbidity with numerous sequelae including the development of chronic kidney disease. Currently, there are no specific therapies that either prevent AKI or hasten its recovery. Thus, clinicians typically rely on management of the underlying infection, optimization of hemodynamic parameters as well as avoidance of nephrotoxins to maximize outcomes. AREAS COVERED Recent advances in understanding the mechanisms of sepsis as well as how these pathways may interact to lead to acute kidney injury have opened the door to the development of new, targeted therapies. This review focuses on the operative pathways in sepsis that have been identified as critical in leading to acute kidney injury and associated therapeutic agents that target these pathways. EXPERT OPINION Despite increased understanding of the pathogenesis of sepsis, development of effective therapeutics to decrease the incidence of AKI have lagged. This is likely due to the complex pathophysiology with overlapping pathways and need for multiple therapies guided by specific biomarkers. Biomarkers that detail operative pathways may be able to guide the institution of more specific therapies with the hope for improved outcomes.
Collapse
Affiliation(s)
- Kambiz Kalantari
- Divison of Nephrology, University of Virginia Health, Charlottesville, Virginia, USA
| | - Mitchell H Rosner
- Divison of Nephrology, University of Virginia Health, Charlottesville, Virginia, USA
| |
Collapse
|
32
|
Li Y, Hepokoski M, Gu W, Simonson T, Singh P. Targeting Mitochondria and Metabolism in Acute Kidney Injury. J Clin Med 2021; 10:3991. [PMID: 34501442 PMCID: PMC8432487 DOI: 10.3390/jcm10173991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) significantly contributes to morbidity and mortality in critically ill patients. AKI is also an independent risk factor for the development and progression of chronic kidney disease. Effective therapeutic strategies for AKI are limited, but emerging evidence indicates a prominent role of mitochondrial dysfunction and altered tubular metabolism in the pathogenesis of AKI. Therefore, a comprehensive, mechanistic understanding of mitochondrial function and renal metabolism in AKI may lead to the development of novel therapies in AKI. In this review, we provide an overview of current state of research on the role of mitochondria and tubular metabolism in AKI from both pre-clinical and clinical studies. We also highlight current therapeutic strategies which target mitochondrial function and metabolic pathways for the treatment of AKI.
Collapse
Affiliation(s)
- Ying Li
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, CA 92093, USA;
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
| | - Mark Hepokoski
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 92093, USA; (W.G.); (T.S.)
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 92093, USA; (W.G.); (T.S.)
| | - Tatum Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 92093, USA; (W.G.); (T.S.)
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, CA 92093, USA;
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
| |
Collapse
|
33
|
Jiménez-Uribe AP, Bellido B, Aparicio-Trejo OE, Tapia E, Sánchez-Lozada LG, Hernández-Santos JA, Fernández-Valverde F, Hernández-Cruz EY, Orozco-Ibarra M, Pedraza-Chaverri J. Temporal characterization of mitochondrial impairment in the unilateral ureteral obstruction model in rats. Free Radic Biol Med 2021; 172:358-371. [PMID: 34175439 DOI: 10.1016/j.freeradbiomed.2021.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Renal fibrosis is a well-known mechanism that favors chronic kidney disease (CKD) development in obstructive nephropathy, a significant pathology worldwide. Fibrosis induction involves several pathways, and although mitochondrial alterations have recently emerged as a critical factor that triggers renal damage in the obstructed kidney, the temporal mitochondrial alterations during the fibrotic induction remain unexplored. Therefore, in this work, we evaluated the time course of mitochondrial mass and bioenergetics alterations induced by a unilateral ureteral obstruction (UUO), a widely used model to study the mechanism involved in kidney fibrosis induction and progression. Our results show a marked reduction in mitochondrial oxidative phosphorylation (OXPHOS) in the obstructed kidney on days 7 to 28 of obstruction without significant mitochondrial coupling changes. Besides, we observed that mitochondrial mass was reduced, probably due to decreased biogenesis and mitophagy induction. OXPHOS impairment was associated with decreased mitochondrial biogenesis markers, the peroxisome proliferator-activated receptor γ co-activator-1alpha (PGC-1α), and nuclear respiratory factor 1 (NRF1); and also, with the induction of mitophagy in a PTEN-induced kinase 1 (PINK1) and Parkin independent way. It is concluded that the impairment of OXPHOS capacity may be explained by the reduction in mitochondrial biogenesis and the induction of mitophagy during fibrotic progression.
Collapse
Affiliation(s)
| | - Belen Bellido
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | | | - Edilia Tapia
- Departmento de Patofisiología Cardio-renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Departmento de Patofisiología Cardio-renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - José Antonio Hernández-Santos
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - Francisca Fernández-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | | | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| |
Collapse
|
34
|
Ding M, Tolbert E, Birkenbach M, Gohh R, Akhlaghi F, Ghonem NS. Treprostinil reduces mitochondrial injury during rat renal ischemia-reperfusion injury. Biomed Pharmacother 2021; 141:111912. [PMID: 34328097 DOI: 10.1016/j.biopha.2021.111912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) is a major factor contributing to acute kidney injury and it is associated with a high morbidity and mortality if untreated. Renal IRI depletes cellular and tissue adenosine triphosphate (ATP), which compromises mitochondrial function, further exacerbating renal tubular injury. Currently, no treatment for IRI is available. This study investigates the protective role of treprostinil in improving mitochondria biogenesis and recovery during rat renal IRI. METHODS Male Sprague Dawley rats were randomly assigned to groups: control, sham, IRI-placebo or IRI-treprostinil and subjected to 45 min of bilateral renal ischemia followed by 1-72 h reperfusion. Placebo or treprostinil (100 ng/kg/min) was administered subcutaneously via an osmotic minipump. RESULTS Treprostinil significantly reduced peak elevated serum creatinine (SCr) levels and accelerated normalization relative to IRI-placebo (p < 0.0001). Treatment with treprostinil also inhibited IRI-mediated renal apoptosis, mitochondrial oxidative injury (p < 0.05), and the release of cytochrome c (p < 0.01) vs. IRI-placebo. In addition, treprostinil preserved renal mitochondrial DNA copy number (p < 0.0001) and renal ATP levels (p < 0.05) to nearly those of sham-operated animals. Non-targeted semi-quantitative proteomics showed reduced levels of ATP synthase subunits in the IRI-placebo group which were restored to sham levels by treprostinil treatment (p < 0.05). Furthermore, treprostinil reduced renal IRI-induced upregulated Drp1 and pErk protein levels, and restored Sirt3 and Pgc-1α levels to baseline (p < 0.05). CONCLUSIONS Treprostinil reduces mitochondrial-mediated renal apoptosis, inhibits mitochondria fission, and promotes mitochondria fusion, thereby accelerating mitochondrial recovery and protecting renal proximal tubules from renal IRI. These results support the clinical investigation of treprostinil as a viable therapy to reduce renal IRI.
Collapse
Affiliation(s)
- Meiwen Ding
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 0288, USA
| | - Evelyn Tolbert
- Division of Renal Disease, Department of Medicine, Rhode Island Hospital, Warren Alpert School of Medicine Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Mark Birkenbach
- Department of Pathology, Rhode Island Hospital, Warren Alpert School of Medicine Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Reginald Gohh
- Division of Organ Transplantation, Rhode Island Hospital, Warren Alpert School of Medicine Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Fatemeh Akhlaghi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 0288, USA
| | - Nisanne S Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 0288, USA.
| |
Collapse
|
35
|
Tian J, Huang Y, Wu T, Huang HD, Ko KM, Zhu BT, Chen J. The Use of Chinese Yang/Qi-Invigorating Tonic Botanical Drugs/Herbal Formulations in Ameliorating Chronic Kidney Disease by Enhancing Mitochondrial Function. Front Pharmacol 2021; 12:622498. [PMID: 34248614 PMCID: PMC8264145 DOI: 10.3389/fphar.2021.622498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/11/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Chronic kidney disease (CKD) is a leading cause of morbidity and mortality. Mitochondrial dysfunction has been implicated as a key factor in the development of CKD. According to traditional Chinese medicine (TCM) theory, many Chinese Yang/Qi-invigorating botanical drugs/herbal formulations have been shown to produce promising outcomes in the clinical management of CKD. Experimental studies have indicated that the health-promoting action of Yang/Qi invigoration in TCM is related to the up-regulation of mitochondrial energy generation and antioxidant status. Objective: In this review, we aim to test whether Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations can provide medical benefits in CKD and its complications. And we also explore the possible involvement of mitochondrial-associated signaling pathway underlying the beneficial effects of Yang/Qi invigoration in TCM. Methods: A systematic search of "PubMed", "China National Knowledge Infrastructure (CNKI)" and "Google Scholar" was carried out to collect all the available articles in English or Chinese related to Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations and their effects on mitochondrial function and chronic kidney disease. Result and Discussion: The relationship between the progression of CKD and mitochondrial function is discussed. The effects of Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations and their active ingredients, including phytosterols/triterpenes, flavonoids, and dibenzocyclooctadiene lignans, on CKD and related alterations in mitochondrial signaling pathways are also presented in this review. In the future, exploration of the possible beneficial effects and clinical studies of more Yang- and Qi-invigorating botanical drugs/herbal formulations in the prevention and/or/treatment of CKD and the molecular mechanisms relating to the enhancement of mitochondrial functions warrants further investigation. Conclusion: Given the critical role of mitochondrial function in safeguarding renal functional integrity, the enhancement of mitochondrial energy metabolism and antioxidant status in kidney tissue is likely involved in renal protection. Future studies on the biochemical and chemical basis underlying the effects of Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations from a mitochondrial perspective will hopefully provide novel insights into the rational development of new drugs for the prevention and/or treatment of CKD.
Collapse
Affiliation(s)
- Jiayi Tian
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yuqi Huang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Tong Wu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China
| | - Kam Ming Ko
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Jihang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
36
|
Zheng D, Zhou H, Wang H, Zhu Y, Wu Y, Li Q, Li T, Liu L. Mesenchymal stem cell-derived microvesicles improve intestinal barrier function by restoring mitochondrial dynamic balance in sepsis rats. Stem Cell Res Ther 2021; 12:299. [PMID: 34039427 PMCID: PMC8152336 DOI: 10.1186/s13287-021-02363-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sepsis is a major cause of death in ICU, and intestinal barrier dysfunction is its important complication, while the treatment is limited. Recently, mesenchymal stem cell-derived microvesicles (MMVs) attract much attention as a strategy of cell-free treatment; whether MMVs are therapeutic in sepsis induced-intestinal barrier dysfunction is obscure. METHODS In this study, cecal ligation and puncture-induced sepsis rats and lipopolysaccharide-stimulated intestinal epithelial cells to investigate the effect of MMVs on intestinal barrier dysfunction. MMVs were harvested from mesenchymal stem cells and were injected into sepsis rats, and the intestinal barrier function was measured. Afterward, MMVs were incubated with intestinal epithelial cells, and the effect of MMVs on mitochondrial dynamic balance was measured. Then the expression of mfn1, mfn2, OPA1, and PGC-1α in MMVs were measured by western blot. By upregulation and downregulation of mfn2 and PGC-1α, the role of MMVs in mitochondrial dynamic balance was investigated. Finally, the role of MMV-carried mitochondria in mitochondrial dynamic balance was investigated. RESULTS MMVs restored the intestinal barrier function by improving mitochondrial dynamic balance and metabolism of mitochondria. Further study revealed that MMVs delivered mfn2 and PGC-1α to intestinal epithelial cells, and promoted mitochondrial fusion and biogenesis, thereby improving mitochondrial dynamic balance. Furthermore, MMVs delivered functional mitochondria to intestinal epithelial cells and enhanced energy metabolism directly. CONCLUSION MMVs can deliver mfn2, PGC-1α, and functional mitochondria to intestinal epithelial cells, synergistically improve mitochondrial dynamic balance of target cells after sepsis, and restore the mitochondrial function and intestinal barrier function. The study illustrated that MMVs might be a promising strategy for the treatment of sepsis.
Collapse
Affiliation(s)
- Danyang Zheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Henan Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Hongchen Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China.
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
37
|
McEvoy CM, Clotet-Freixas S, Tokar T, Pastrello C, Reid S, Batruch I, RaoPeters AAE, Kaths JM, Urbanellis P, Farkona S, Van JAD, Urquhart BL, John R, Jurisica I, Robinson LA, Selzner M, Konvalinka A. Normothermic Ex-vivo Kidney Perfusion in a Porcine Auto-Transplantation Model Preserves the Expression of Key Mitochondrial Proteins: An Unbiased Proteomics Analysis. Mol Cell Proteomics 2021; 20:100101. [PMID: 34033948 PMCID: PMC8253910 DOI: 10.1016/j.mcpro.2021.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of donation after circulatory death injury compared with static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at three time points from pig kidneys subjected to 30 min of warm ischemia, followed by 8 h of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (false discovery rate < 0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (electron transfer flavoprotein subunit beta and carnitine O-palmitoyltransferase 2, mitochondrial) by immunoblotting. Transcription factor databases identified members of the peroxisome proliferator-activated receptors (PPAR) family of transcription factors as the upstream regulators of our dataset, and we confirmed increased expression of PPARA, PPARD, and RXRA in NEVKP with reverse transcription polymerase chain reaction. The proteome-level changes observed in NEVKP mediate critical metabolic pathways. These effects may be coordinated by PPAR-family transcription factors and may represent novel therapeutic targets in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shelby Reid
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adrien A E RaoPeters
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - J Moritz Kaths
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, Essen, Germany
| | - Peter Urbanellis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Markus Selzner
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Hu W, Jiang S, Liao Y, Li J, Dong F, Guo J, Wang X, Fei L, Cui Y, Ren X, Xu N, Zhao L, Chen L, Zheng Y, Li L, Patzak A, Persson PB, Zheng Z, Lai EY. High phosphate impairs arterial endothelial function through AMPK-related pathways in mouse resistance arteries. Acta Physiol (Oxf) 2021; 231:e13595. [PMID: 33835704 DOI: 10.1111/apha.13595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
AIMS In patients with renal disease, high serum phosphate shows a relationship with cardiovascular risk. We speculate that high phosphate (HP) impairs arterial vasodilation via the endothelium and explore potential underlying mechanisms. METHODS Isolated vessel relaxation, endothelial function, glomerular filtration rate (GFR), oxidative stress status and protein expression were assessed in HP diet mice. Mitochondrial function and protein expression were assessed in HP-treated human umbilical vein endothelial cells (HUVECs). RESULTS High phosphate (1.3%) diet for 12 weeks impaired endothelium-dependent relaxation in mesenteric arteries, kidney interlobar arteries and afferent arterioles; reduced GFR and the blood pressure responses to acute administration of acetylcholine. The PPARα/LKB1/AMPK/eNOS pathway was attenuated in the endothelium of mesenteric arteries from HP diet mice. The observed vasodilatory impairment of mesenteric arteries was ameliorated by PPARα agonist WY-14643. The phosphate transporter PiT-1 knockdown prevented HP-mediated suppression of eNOS activity by impeding phosphorus influx in HUVECs. Endothelium cytoplasmic and mitochondrial reactive oxygen species (ROS) were increased in HP diet mice. Moreover HP decreased the expression of mitochondrial-related antioxidant genes. Finally, mitochondrial membrane potential and PGC-1α expression were reduced by HP treatment in HUVECs, which was partly restored by AMPKα agonist. CONCLUSIONS HP impairs endothelial function by reducing NO bioavailability via decreasing eNOS activity and increasing mitochondrial ROS, in which the AMPK-related signalling pathways may play a key role.
Collapse
Affiliation(s)
- Weipeng Hu
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Shan Jiang
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Yixin Liao
- Department of Obstetrics and Gynecology Nanfang HospitalSouthern Medical University Guangzhou China
| | - Jinhong Li
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
| | - Fang Dong
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Jie Guo
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Xiaohua Wang
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
| | - Lingyan Fei
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
| | - Yu Cui
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Xiaoqiu Ren
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Nan Xu
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Liang Zhao
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Department of Physiology School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Limeng Chen
- Department of Nephrology Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical College Beijing China
| | - Yali Zheng
- Department of Nephrology Ningxia people’s hospital Yinchuan China
| | - Lingli Li
- Division of Nephrology and Hypertension Georgetown University Washington DC USA
| | - Andreas Patzak
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Pontus B. Persson
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Zhihua Zheng
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
| | - En Yin Lai
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
- Department of Physiology School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
39
|
Aldini G, de Courten B, Regazzoni L, Gilardoni E, Ferrario G, Baron G, Altomare A, D’Amato A, Vistoli G, Carini M. Understanding the antioxidant and carbonyl sequestering activity of carnosine: direct and indirect mechanisms. Free Radic Res 2020; 55:321-330. [DOI: 10.1080/10715762.2020.1856830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
40
|
Giraud S, Kerforne T, Zely J, Ameteau V, Couturier P, Tauc M, Hauet T. The inhibition of eIF5A hypusination by GC7, a preconditioning protocol to prevent brain death-induced renal injuries in a preclinical porcine kidney transplantation model. Am J Transplant 2020; 20:3326-3340. [PMID: 32400964 DOI: 10.1111/ajt.15994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 01/25/2023]
Abstract
The eIF5A hypusination inhibitor GC7 (N1-guanyl-1,7-diaminoheptane) was shown to protect from ischemic injuries. We hypothesized that GC7 could be useful for preconditioning kidneys from donors before transplantation. Using a preclinical porcine brain death (BD) donation model, we carried out in vivo evaluation of GC7 pretreatment (3 mg/kg iv, 5 minutes after BD) at the beginning of the 4h-donor management, after which kidneys were collected and cold-stored (18h in University of Wisconsin solution) and 1 was allotransplanted. Groups were defined as following (n = 6 per group): healthy (CTL), untreated BD (Vehicle), and GC7-treated BD (Vehicle + GC7). At the end of 4h-management, GC7 treatment decreased BD-induced markers, as radical oxygen species markers. In addition, GC7 increased expression of mitochondrial protective peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC1α) and antioxidant proteins (superoxyde-dismutase-2, heme oxygenase-1, nuclear factor [erythroid-derived 2]-like 2 [NRF2], and sirtuins). At the end of cold storage, GC7 treatment induced an increase of NRF2 and PGC1α mRNA and a better mitochondrial integrity/homeostasis with a decrease of dynamin- related protein-1 activation and increase of mitofusin-2. Moreover, GC7 treatment significantly improved kidney outcome during 90 days follow-up after transplantation (fewer creatininemia and fibrosis). Overall, GC7 treatment was shown to be protective for kidneys against BD-induced injuries during donor management and subsequently appeared to preserve antioxidant defenses and mitochondria homeostasis; these protective effects being accompanied by a better transplantation outcome.
Collapse
Affiliation(s)
- Sebastien Giraud
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France
| | - Thomas Kerforne
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France.,Service d'Anesthésie-Réanimation, CHU de Poitiers, Poitiers, France
| | - Jeremy Zely
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France.,Service d'Anesthésie-Réanimation, CHU de Poitiers, Poitiers, France
| | - Virginie Ameteau
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France
| | - Pierre Couturier
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France.,MOPICT 'plate-forme MOdélisation Préclinique - Innovations Chirurgicale et Technologique', Domaine Expérimental du Magneraud, Surgères, France
| | - Michel Tauc
- Université Cote d'Azur, LP2M, CNRS-7370, Nice, France
| | - Thierry Hauet
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France.,MOPICT 'plate-forme MOdélisation Préclinique - Innovations Chirurgicale et Technologique', Domaine Expérimental du Magneraud, Surgères, France.,FHU SUPORT 'SUrvival oPtimization in ORgan Transplantation', Poitiers, France
| |
Collapse
|
41
|
Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol 2020; 319:F1105-F1116. [PMID: 33073587 DOI: 10.1152/ajprenal.00285.2020] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) has been widely recognized as an important risk factor for the occurrence and development of chronic kidney disease (CKD). Even milder AKI has adverse consequences and could progress to renal fibrosis, which is the ultimate common pathway for various terminal kidney diseases. Thus, it is urgent to develop a strategy to hinder the transition from AKI to CKD. Some mechanisms of the AKI-to-CKD transition have been revealed, such as nephron loss, cell cycle arrest, persistent inflammation, endothelial injury with vascular rarefaction, and epigenetic changes. Previous studies have elucidated the pivotal role of mitochondria in acute injuries and demonstrated that the fitness of this organelle is a major determinant in both the pathogenesis and recovery of organ function. Recent research has suggested that damage to mitochondrial function in early AKI is a crucial factor leading to tubular injury and persistent renal insufficiency. Dysregulation of mitochondrial homeostasis, alterations in bioenergetics, and organelle stress cross talk contribute to the AKI-to-CKD transition. In this review, we focus on the pathophysiology of mitochondria in renal recovery after AKI and progression to CKD, confirming that targeting mitochondria represents a potentially effective therapeutic strategy for the progression of AKI to CKD.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Lei
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Xie
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Agil A, Chayah M, Visiedo L, Navarro-Alarcon M, Rodríguez Ferrer JM, Tassi M, Reiter RJ, Fernández-Vázquez G. Melatonin Improves Mitochondrial Dynamics and Function in the Kidney of Zücker Diabetic Fatty Rats. J Clin Med 2020; 9:jcm9092916. [PMID: 32927647 PMCID: PMC7564180 DOI: 10.3390/jcm9092916] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity and associated diabetes (diabesity) impair kidney mitochondrial dynamics by augmenting fission and diminishing fusion, which results in mitochondrial and renal dysfunction. Based on available evidence, the antioxidant activities of melatonin may improve impaired renal mitochondrial function in obese diabetic animals by restoring the imbalanced dynamics through inhibiting fission and promoting fusion. Male Zücker diabetic fatty (ZDF) rats and lean littermates (ZL) were orally treated either with melatonin (10 mg/kg BW/day) (M-ZDF and M-ZL) or vehicle (C-ZDF and C-ZL) for 17 weeks. Kidney function was evaluated by measurement of total urine volume, proteinuria, creatinine clearance, and assessment of kidney mitochondrial dynamics and function. C-ZDF exhibited impaired dynamics and function of kidney mitochondria in comparison to C-ZL. Melatonin improved nephropathy of ZDF rats and modulated their mitochondrial dynamics by reducing expression of Drp1 fission marker and increasing that of fusion markers, Mfn2 and Opa1. Furthermore, melatonin ameliorated mitochondrial dysfunction by increasing respiratory control index and electron transfer chain complex IV activity. In addition, it lowered mitochondrial oxidative status. Our findings show that melatonin supplementation improves nephropathy likely via modulation of the mitochondrial fission/fusion balance and function in ZDF rats.
Collapse
Affiliation(s)
- Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (M.C.); (L.V.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-625-143-359
| | - Meriem Chayah
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (M.C.); (L.V.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada, 18016 Granada, Spain
| | - Lucia Visiedo
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (M.C.); (L.V.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada, 18016 Granada, Spain
| | - Miguel Navarro-Alarcon
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain;
| | | | - Mohamed Tassi
- Service of Microscopy, CIBM, University of Granada, 18016 Granada, Spain;
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX 78229, USA;
| | | |
Collapse
|
43
|
Lin PH, Duann P. Dyslipidemia in Kidney Disorders: Perspectives on Mitochondria Homeostasis and Therapeutic Opportunities. Front Physiol 2020; 11:1050. [PMID: 33013450 PMCID: PMC7494972 DOI: 10.3389/fphys.2020.01050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
To excrete body nitrogen waste and regulate electrolyte and fluid balance, the kidney has developed into an energy factory with only second to the heart in mitochondrial content in the body to meet the high-energy demand and regulate homeostasis. Energy supply from the renal mitochondria majorly depends on lipid metabolism, with programed enzyme systems in fatty acid β-oxidation and Krebs cycle. Renal mitochondria integrate several metabolic pathways, including AMPK/PGC-1α, PPARs, and CD36 signaling to maintain energy homeostasis for dynamic and static requirements. The pathobiology of several kidney disorders, including diabetic nephropathy, acute and chronic kidney injuries, has been primarily linked to impaired mitochondrial bioenergetics. Such homeostatic disruption in turn stimulates a pathological adaptation, with mitochondrial enzyme system reprograming possibly leading to dyslipidemia. However, this alteration, while rescuing oncotic pressure deficit secondary to albuminuria and dissipating edematous disorder, also imposes an ominous lipotoxic consequence. Reprograming of lipid metabolism in kidney injury is essential to preserve the integrity of kidney mitochondria, thereby preventing massive collateral damage including excessive autophagy and chronic inflammation. Here, we review dyslipidemia in kidney disorders and the most recent advances on targeting mitochondrial energy metabolism as a therapeutic strategy to restrict renal lipotoxicity, achieve salutary anti-edematous effects, and restore mitochondrial homeostasis.
Collapse
Affiliation(s)
- Pei-Hui Lin
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Pu Duann
- Research and Development, Salem Veteran Affairs Medical Center, Salem, VA, United States
| |
Collapse
|
44
|
Martínez-Klimova E, Aparicio-Trejo OE, Gómez-Sierra T, Jiménez-Uribe AP, Bellido B, Pedraza-Chaverri J. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction. Biofactors 2020; 46:716-733. [PMID: 32905648 DOI: 10.1002/biof.1673] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Obstructive nephropathy favors the progression to chronic kidney disease (CKD), a severe health problem worldwide. The unilateral ureteral obstruction (UUO) model is used to study the development of fibrosis. Impairment of renal mitochondria plays a crucial role in several types of CKD and has been strongly related to fibrosis onset. Nevertheless, in the UUO model, the impairment of mitochondria, their relationship with endoplasmic reticulum (ER) stress induction and the participation of both to induce the fibrotic process remain unclear. In this review, we summarize the current information about mitochondrial bioenergetics, redox dynamics, mitochondrial mass, and biogenesis alterations, as well as the relationship of these mitochondrial alterations with ER stress and their participation in fibrotic processes in UUO models. Early after obstruction, there is metabolic reprogramming related to mitochondrial fatty acid β-oxidation impairment, triggering lipid deposition, oxidative stress, (calcium) Ca2+ dysregulation, and a reduction in mitochondrial mass and biogenesis. Mitochondria and the ER establish a pathological feedback loop that promotes the impairment of both organelles by ER stress pathways and Ca2+ levels dysregulation. Preserving mitochondrial and ER function can prevent or at least delay the fibrotic process and loss of renal function. However, deeper understanding is still necessary for future clinically-useful therapies.
Collapse
Affiliation(s)
- Elena Martínez-Klimova
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Belen Bellido
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
45
|
Li Y, Nourbakhsh N, Pham H, Tham R, Zuckerman JE, Singh P. Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F229-F244. [PMID: 32538150 DOI: 10.1152/ajprenal.00390.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sepsis-associated acute kidney injury (s-AKI) has a staggering impact in patients and lacks any treatment. Incomplete understanding of the pathogenesis of s-AKI is a major barrier to the development of effective therapies. We address the gaps in knowledge regarding renal oxygenation, tubular metabolism, and mitochondrial function in the pathogenesis of s-AKI using the cecal ligation and puncture (CLP) model in mice. At 24 h after CLP, renal oxygen delivery was reduced; however, fractional oxygen extraction was unchanged, suggesting inefficient renal oxygen utilization despite decreased glomerular filtration rate and filtered load. To investigate the underlying mechanisms, we examined temporal changes in mitochondrial function and metabolism at 4 and 24 h after CLP. At 4 h after CLP, markers of mitochondrial content and biogenesis were increased in CLP kidneys, but mitochondrial oxygen consumption rates were suppressed in proximal tubules. Interestingly, at 24 h, proximal tubular mitochondria displayed high respiratory capacity, but with decreased mitochondrial content, biogenesis, fusion, and ATP levels in CLP kidneys, suggesting decreased ATP synthesis efficiency. We further investigated metabolic reprogramming after CLP and observed reduced expression of fatty acid oxidation enzymes but increased expression of glycolytic enzymes at 24 h. However, assessment of functional glycolysis revealed lower glycolytic capacity, glycolytic reserve, and compensatory glycolysis in CLP proximal tubules, which may explain their susceptibility to injury. In conclusion, we demonstrated significant alterations in renal oxygenation, tubular mitochondrial function, and metabolic reprogramming in s-AKI, which may play an important role in the progression of injury and recovery from AKI in sepsis.
Collapse
Affiliation(s)
- Ying Li
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Noureddin Nourbakhsh
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, California
| | - Hai Pham
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rick Tham
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jonathan E Zuckerman
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California
| | - Prabhleen Singh
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
46
|
Jang HS, Noh MR, Kim J, Padanilam BJ. Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Front Med (Lausanne) 2020; 7:65. [PMID: 32226789 PMCID: PMC7080698 DOI: 10.3389/fmed.2020.00065] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
The kidney is a highly metabolic organ and uses high levels of ATP to maintain electrolyte and acid-base homeostasis and reabsorb nutrients. Energy depletion is a critical factor in development and progression of various kidney diseases including acute kidney injury (AKI), chronic kidney disease (CKD), and diabetic and glomerular nephropathy. Mitochondrial fatty acid β-oxidation (FAO) serves as the preferred source of ATP in the kidney and its dysfunction results in ATP depletion and lipotoxicity to elicit tubular injury and inflammation and subsequent fibrosis progression. This review explores the current state of knowledge on the role of mitochondrial FAO dysfunction in the pathophysiology of kidney diseases including AKI and CKD and prospective views on developing therapeutic interventions based on mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anatomy, Jeju National University School of Medicine, Jeju, South Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
47
|
Association of proteome and metabolome signatures with severity in patients with community-acquired pneumonia. J Proteomics 2020; 214:103627. [DOI: 10.1016/j.jprot.2019.103627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/29/2019] [Accepted: 12/22/2019] [Indexed: 01/09/2023]
|
48
|
Wang D, Wang Y, Zou X, Shi Y, Liu Q, Huyan T, Su J, Wang Q, Zhang F, Li X, Tie L. FOXO1 inhibition prevents renal ischemia-reperfusion injury via cAMP-response element binding protein/PPAR-γ coactivator-1α-mediated mitochondrial biogenesis. Br J Pharmacol 2019; 177:432-448. [PMID: 31655022 DOI: 10.1111/bph.14878] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Growing evidence indicates targeting mitochondrial dynamics and biogenesis could accelerate recovery from renal ischemia-reperfusion (I/R) injury, but the underlying mechanisms remain elusive. Transcription factor forkhead box O1 (FOXO1) is a key regulator of mitochondrial homeostasis and plays a pathological role in the progression of renal disease. EXPERIMENTAL APPROACH A mouse model of renal I/R injury and a hypoxia/reoxygenation (H/R) injury model for human renal tubular epithelial cells were used. KEY RESULTS I/R injury up-regulated renal expression of FOXO1 and treatment with FOXO1-selective inhibitor AS1842856 prior to I/R injury decreased serum urea nitrogen, serum creatinine and the tubular damage score after injury. Post-I/R injury AS1842856 treatment could also ameliorate renal function and improve the survival rate of mice following injury. AS1842856 administration reduced mitochondrial-mediated apoptosis, suppressed the overproduction of mitochondrial ROS and accelerated recovery of ATP both in vivo and in vitro. Additionally, FOXO1 inhibition improved mitochondrial biogenesis and suppressed mitophagy. Expression of PPAR-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial biogenesis, was down-regulated in both I/R and H/R injury, which could be abrogated by FOXO1 inhibition. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that FOXO1 inhibited PGC-1α transcription by competing with cAMP-response element binding protein (CREB) for its binding to transcriptional coactivators CREBBP/EP300 (CBP/P300). CONCLUSION AND IMPLICATIONS These findings suggested that FOXO1 was critical to maintain mitochondrial function in renal tubular epithelial cells and FOXO1 may serve as a therapeutic target for pharmacological intervention in renal I/R injury.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Yanqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.,Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiantong Zou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Yundi Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Qian Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Tianru Huyan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Lu Tie
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| |
Collapse
|
49
|
Salt Inducible Kinase Signaling Networks: Implications for Acute Kidney Injury and Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20133219. [PMID: 31262033 PMCID: PMC6651122 DOI: 10.3390/ijms20133219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
A number of signal transduction pathways are activated during Acute Kidney Injury (AKI). Of particular interest is the Salt Inducible Kinase (SIK) signaling network, and its effects on the Renal Proximal Tubule (RPT), one of the primary targets of injury in AKI. The SIK1 network is activated in the RPT following an increase in intracellular Na+ (Na+in), resulting in an increase in Na,K-ATPase activity, in addition to the phosphorylation of Class IIa Histone Deacetylases (HDACs). In addition, activated SIKs repress transcriptional regulation mediated by the interaction between cAMP Regulatory Element Binding Protein (CREB) and CREB Regulated Transcriptional Coactivators (CRTCs). Through their transcriptional effects, members of the SIK family regulate a number of metabolic processes, including such cellular processes regulated during AKI as fatty acid metabolism and mitochondrial biogenesis. SIKs are involved in regulating a number of other cellular events which occur during AKI, including apoptosis, the Epithelial to Mesenchymal Transition (EMT), and cell division. Recently, the different SIK kinase isoforms have emerged as promising drug targets, more than 20 new SIK2 inhibitors and activators having been identified by MALDI-TOF screening assays. Their implementation in the future should prove to be important in such renal disease states as AKI.
Collapse
|
50
|
Inhibition of lymphatic proliferation by the selective VEGFR-3 inhibitor SAR131675 ameliorates diabetic nephropathy in db/db mice. Cell Death Dis 2019; 10:219. [PMID: 30833548 PMCID: PMC6399322 DOI: 10.1038/s41419-019-1436-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
Recent studies have demonstrated that chronic inflammation-induced lymphangiogenesis plays a crucial role in the progression of various renal diseases, including diabetic nephropathy. SAR131675 is a selective vascular endothelial cell growth factor receptor-3 (VEGFR-3)-tyrosine kinase inhibitor that acts as a ligand for VEGF-C and VEGF-D to inhibit lymphangiogenesis. In this study, we evaluated the effect of SAR131675 on renal lymphangiogenesis in a mouse model of type 2 diabetes. Male C57BLKS/J db/m and db/db mice were fed either a regular chow diet or a diet containing SAR131675 for 12 weeks from 8 weeks of age. In addition, we studied palmitate-induced lymphangiogenesis in human kidney-2 (HK2) cells and RAW264.7 monocytes/macrophages, which play a major role in lymphangiogenesis in the kidneys. SAR131475 ameliorated dyslipidemia, albuminuria, and lipid accumulation in the kidneys of db/db mice, with no significant changes in glucose and creatinine levels and body weight. Diabetes-induced systemic inflammation as evidenced by increased systemic monocyte chemoattractant protein-1 and tumor necrosis factor-α level was decreased by SAR131475. SAR131475 ameliorated the accumulation of triglycerides and free fatty acids and reduced inflammation in relation to decreased chemokine expression and pro-inflammatory M1 macrophage infiltration in the kidneys. Downregulation of VEGF-C and VEGFR-3 by SAR131475 inhibited lymphatic growth as demonstrated by decreased expression of LYVE-1 and podoplanin that was further accompanied by reduced tubulointerstitial fibrosis, and inflammation in relation to improvement in oxidative stress and apoptosis. Treatment with SAR131475 improved palmitate-induced increase in the expression of VEGF-C, VEGFR-3, and LYVE-1, along with improvement in cytosolic and mitochondrial oxidative stress in RAW264.7 and HK2 cells. Moreover, the enhanced expression of M1 phenotypes in RAW264.7 cells under palmitate stress was reduced by SAR131475 treatment. The results suggest that modulation of lymphatic proliferation in the kidneys is a new treatment approach for type 2 diabetic nephropathy and that SAR131675 is a promising therapy to ameliorate renal damage by reducing lipotoxicity-induced lymphangiogenesis.
Collapse
|