1
|
Abulizi A, Su R, Wu P, Cheng X, Aisha M, Wang Z. Genetic Insights into the Enigma of Family Intracranial Aneurysms. World Neurosurg 2025; 193:135-140. [PMID: 39481842 DOI: 10.1016/j.wneu.2024.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Familial intracranial aneurysms (FIAs) are distinguished by significant genetic predisposition, leading to clustering of cases within families and heightening the risk of subarachnoid hemorrhage following aneurysm rupture. This review analyzes recent advancements in understanding the genetic and molecular mechanisms underlying FIAs, focusing on key genetic risk factors and environmental influences. We explore cutting-edge genome-wide association studies and next-generation sequencing technologies, which have identified susceptibility genes such as ANGPTL6, peptidyl proline cis-trans isomerase like protein 4, and NOTCH3 as crucial contributors to FIA pathophysiology. By incorporating findings from multiomics and gene-editing research, we highlight the potential for improved screening, preventive strategies, and therapeutic approaches. These insights are essential to advancing precision medicine in managing FIAs, paving the way for collaborative research and targeted interventions.
Collapse
Affiliation(s)
- Alimasi Abulizi
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Riqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojiang Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaitili Aisha
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
2
|
Bhoir S, De Benedetti A. Targeting Prostate Cancer, the 'Tousled Way'. Int J Mol Sci 2023; 24:11100. [PMID: 37446279 DOI: 10.3390/ijms241311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Androgen deprivation therapy (ADT) has been the mainstay of prostate cancer (PCa) treatment, with success in developing more effective inhibitors of androgen synthesis and antiandrogens in clinical practice. However, hormone deprivation and AR ablation have caused an increase in ADT-insensitive PCas associated with a poor prognosis. Resistance to ADT arises through various mechanisms, and most castration-resistant PCas still rely on the androgen axis, while others become truly androgen receptor (AR)-independent. Our research identified the human tousled-like kinase 1 (TLK1) as a crucial early mediator of PCa cell adaptation to ADT, promoting androgen-independent growth, inhibiting apoptosis, and facilitating cell motility and metastasis. Although explicit, the growing role of TLK1 biology in PCa has remained underrepresented and elusive. In this review, we aim to highlight the diverse functions of TLK1 in PCa, shed light on the molecular mechanisms underlying the transition from androgen-sensitive (AS) to an androgen-insensitive (AI) disease mediated by TLK1, and explore potential strategies to counteract this process. Targeting TLK1 and its associated signaling could prevent PCa progression to the incurable metastatic castration-resistant PCa (mCRPC) stage and provide a promising approach to treating PCa.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
3
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
4
|
Mourkioti I, Angelopoulou A, Belogiannis K, Lagopati N, Potamianos S, Kyrodimos E, Gorgoulis V, Papaspyropoulos A. Interplay of Developmental Hippo-Notch Signaling Pathways with the DNA Damage Response in Prostate Cancer. Cells 2022; 11:cells11152449. [PMID: 35954292 PMCID: PMC9367915 DOI: 10.3390/cells11152449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer belongs in the class of hormone-dependent cancers, representing a major cause of cancer incidence in men worldwide. Since upon disease onset almost all prostate cancers are androgen-dependent and require active androgen receptor (AR) signaling for their survival, the primary treatment approach has for decades relied on inhibition of the AR pathway via androgen deprivation therapy (ADT). However, following this line of treatment, cancer cell pools often become resistant to therapy, contributing to disease progression towards the significantly more aggressive castration-resistant prostate cancer (CRPC) form, characterized by poor prognosis. It is, therefore, of critical importance to elucidate the molecular mechanisms and signaling pathways underlying the progression of early-stage prostate cancer towards CRPC. In this review, we aim to shed light on the role of major signaling pathways including the DNA damage response (DDR) and the developmental Hippo and Notch pathways in prostate tumorigenesis. We recapitulate key evidence demonstrating the crosstalk of those pathways as well as with pivotal prostate cancer-related 'hubs' such as AR signaling, and evaluate the clinical impact of those interactions. Moreover, we attempt to identify molecules of the complex DDR-Hippo-Notch interplay comprising potentially novel therapeutic targets in the battle against prostate tumorigenesis.
Collapse
Affiliation(s)
- Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Spyridon Potamianos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Efthymios Kyrodimos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| |
Collapse
|
5
|
Khalil MI, De Benedetti A. Tousled-like kinase 1: a novel factor with multifaceted role in mCRPC progression and development of therapy resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:93-101. [PMID: 35582542 PMCID: PMC8992593 DOI: 10.20517/cdr.2021.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Standard treatment for advanced Prostate Cancer (PCa) consists of androgen deprivation therapy (ADT), but ultimately fails, resulting in the incurable phase of the disease: metastatic castration-resistant prostate cancer (mCRPC). Targeting PCa cells before their progression to mCRPC would greatly improve the outcome, if strategies could be devised selectively targeting androgen receptor (AR)-dependent and/or independent compensatory pathways which promote mCRPC development. Combination therapy by targeting the DNA damage response (DDR) along with ADT has been limited by general toxicity, and a goal of clinical trials is how to target the DDR more specifically. In recent years, our lab has identified a key role for the DDR kinase, TLK1, in mediating key aspects of adaptation to ADT, first by promoting a cell cycle arrest (through the TLK1>NEK1>ATR>Chk1 kinase cascade) under the unfavorable growth conditions (androgen deprivation), and then by reprogramming the PCa cells to adapt to androgen-independent growth via the NEK1>YAP/AR>CRPC conversion. In addition, TLK1 plays a key anti-apoptotic role via the NEK1>VDAC1 regulation on the intrinsic mitochondrial apoptotic pathway when the DDR is activated. Finally, TLK1 was recently identified as having an important role in motility and metastasis via regulation of the kinases MK5/PRAK and AKT (indirectly via AKTIP).
Collapse
Affiliation(s)
- Md Imtiaz Khalil
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
6
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
7
|
Kim CL, Lim SB, Kim K, Jeong HS, Mo JS. Phosphorylation analysis of the Hippo-YAP pathway using Phos-tag. J Proteomics 2022; 261:104582. [DOI: 10.1016/j.jprot.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
8
|
Whole-exome sequencing in a Japanese multiplex family identifies new susceptibility genes for intracranial aneurysms. PLoS One 2022; 17:e0265359. [PMID: 35299232 PMCID: PMC8929693 DOI: 10.1371/journal.pone.0265359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Intracranial aneurysms (IAs) cause subarachnoid hemorrhage, which has high rates of mortality and morbidity when ruptured. Recently, the role of rare variants in the genetic background of complex diseases has been increasingly recognized. The aim of this study was to identify rare variants for susceptibility to IA. Methods Whole-exome sequencing was performed on seven members of a Japanese pedigree with highly aggregated IA. Candidate genes harboring co-segregating rare variants with IA were re-sequenced and tested for association with IA using additional 500 probands and 323 non-IA controls. Functional analysis of rare variants detected in the pedigree was also conducted. Results We identified two gene variants shared among all four affected participants in the pedigree. One was the splicing donor c.1515+1G>A variant in NPNT (Nephronectin), which was confirmed to cause aberrant splicing by a minigene assay. The other was the missense p.P83T variant in CBY2 (Chibby family member 2). Overexpression of p.P83T CBY2 fused with red fluorescent protein tended to aggregate in the cytoplasm. Although Nephronectin has been previously reported to be involved in endothelial angiogenic functions, CBY2 is a novel molecule in terms of vascular pathophysiology. We confirmed that CBY2 was expressed in cerebrovascular smooth muscle cells in an isoform2-specific manner. Targeted CBY2 re-sequencing in additional case-control samples identified three deleterious rare variants (p.R46H, p.P83T, and p.L183R) in seven probands, showing a significant enrichment in the overall probands (8/501) compared to the controls (0/323) (p = 0.026, Fisher’s extract test). Conclusions NPNT and CBY2 were identified as novel susceptibility genes for IA. The highly heterogeneous and polygenic architecture of IA susceptibility can be uncovered by accumulating extensive analyses that focus on each pedigree with a high incidence of IA.
Collapse
|
9
|
Khalil MI, Ghosh I, Singh V, Chen J, Zhu H, De Benedetti A. NEK1 Phosphorylation of YAP Promotes Its Stabilization and Transcriptional Output. Cancers (Basel) 2020; 12:cancers12123666. [PMID: 33297404 PMCID: PMC7762262 DOI: 10.3390/cancers12123666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary We earlier described the involvement of the TLK1>NEK1>ATR>Chk1 axis as a key determinant of cell cycle arrest in androgen-dependent prostate cancer (PCa) cells after androgen deprivation. We now report that the TLK1>NEK1 axis is also involved in stabilization of yes-associated protein 1 (YAP1), the transcriptional co-activator in the Hippo pathway, presumably facilitating reprogramming of the cells toward castration-resistant PCa (CRPC). NEK1 interacts with YAP1 physically resulting in its phosphorylation of 6 residues, which enhance its stability and activity. Analyses of cancer Protein Atlas and TCGA expression panels revealed a link between activated NEK1 and YAP1 expression and several YAP transcription targets. Abstract Most prostate cancer (PCa) deaths result from progressive failure in standard androgen deprivation therapy (ADT), leading to metastatic castration-resistant PCa (mCRPC); however, the mechanism and key players leading to this are not fully understood. While studying the role of tousled-like kinase 1 (TLK1) and never in mitosis gene A (NIMA)-related kinase 1 (NEK1) in a DNA damage response (DDR)-mediated cell cycle arrest in LNCaP cells treated with bicalutamide, we uncovered that overexpression of wt-NEK1 resulted in a rapid conversion to androgen-independent (AI) growth, analogous to what has been observed when YAP1 is overexpressed. We now report that overexpression of wt-NEK1 results in accumulation of YAP1, suggesting the existence of a TLK1>NEK1>YAP1 axis that leads to adaptation to AI growth. Further, YAP1 is co-immunoprecipitated with NEK1. Importantly, NEK1 was able to phosphorylate YAP1 on six residues in vitro, which we believe are important for stabilization of the protein, possibly by increasing its interaction with transcriptional partners. In fact, knockout (KO) of NEK1 in NT1 PCa cells resulted in a parallel decrease of YAP1 level and reduced expression of typical YAP-regulated target genes. In terms of cancer potential implications, the expression of NEK1 and YAP1 proteins was found to be increased and correlated in several cancers. These include PCa stages according to Gleason score, head and neck squamous cell carcinoma, and glioblastoma, suggesting that this co-regulation is imparted by increased YAP1 stability when NEK1 is overexpressed or activated by TLK1, and not through transcriptional co-expression. We propose that the TLK1>NEK1>YAP1 axis is a key determinant for cancer progression, particularly during the process of androgen-sensitive to -independent conversion during progression to mCRPC.
Collapse
Affiliation(s)
- Md Imtiaz Khalil
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
| | - Ishita Ghosh
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
| | - Vibha Singh
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry and Proteomics Core, Center for Structural Biology, University of Kentucky, Lexington, KY 40506, USA; (J.C.); (H.Z.)
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry and Proteomics Core, Center for Structural Biology, University of Kentucky, Lexington, KY 40506, USA; (J.C.); (H.Z.)
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
- Correspondence: ; Tel.: +1-31-8675-5668
| |
Collapse
|
10
|
Müller RU, Schermer B. Hippo signaling-a central player in cystic kidney disease? Pediatr Nephrol 2020; 35:1143-1152. [PMID: 31297585 DOI: 10.1007/s00467-019-04299-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Cystic transformation of kidney tissue is a key feature of various disorders including autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and disorders of the nephronophthisis spectrum (NPH). While ARPKD and NPH typically affect children and adolescents, pediatric onset of ADPKD is less frequently found. While both ADPKD and ARPKD are characterized by formation of hundreds of cysts accompanied by hyperproliferation of tubular epithelia with massive renal enlargement, NPH patients usually show kidneys of normal or reduced size with cysts limited to the corticomedullary border. Recent results suggest the hippo pathway to be a central regulator at the crossroads of the renal phenotype in both diseases. Hippo signaling regulates organ size and proliferation by keeping the oncogenic transcriptional co-activators Yes associated protein 1 (YAP) and WW domain containing transcription regulator 1 (TAZ) in check. Once this inhibition is released, nuclear YAP/TAZ interacts with TEAD family transcription factors and the consecutive transcriptional activation of TEA domain family members (TEAD) target genes mediates an increase in proliferation. Here, we review the current knowledge on the impact of NPHP and ADPKD mutations on Hippo signaling networks. Furthermore, we provide an outlook towards potential future therapeutic strategies targeting Hippo signaling to alleviate cystic kidney disease.
Collapse
Affiliation(s)
- Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Streets A, Ong A. Post-translational modifications of the polycystin proteins. Cell Signal 2020; 72:109644. [PMID: 32320857 DOI: 10.1016/j.cellsig.2020.109644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and affects up to 12 million people worldwide. Germline mutations in two genes, PKD1 or PKD2, account for almost all patients with ADPKD. The ADPKD proteins, polycystin-1 (PC1) and polycystin-2 (PC2), are regulated by post-translational modifications (PTM), with phosphorylation, glycosylation and proteolytic cleavage being the best described changes. A few PTMs have been shown to regulate polycystin trafficking, signalling, localisation or stability and thus their physiological function. A key challenge for the future will be to elucidate the functional significance of all the individual PTMs reported to date. Finally, it is possible that site-specific mutations that disrupt PTM could contribute to cystogenesis although in the majority of cases, confirmatory evidence is awaited.
Collapse
Affiliation(s)
- Andrew Streets
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK.
| | - Albert Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
12
|
|
13
|
Michgehl U, Pavenstädt H, Vollenbröker B. Cross talk between the Crumbs complex and Hippo signaling in renal epithelial cells. Pflugers Arch 2017; 469:917-926. [PMID: 28612137 DOI: 10.1007/s00424-017-2004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Cell polarity has a crucial role in organizing cells into tissues and in mediating transport processes and cell-cell communication. Especially the cells of the nephron require apicobasal polarity to establish and maintain their barrier function. The Crumbs complex including the integral membrane protein Crumbs, as well as Pals1 and Patj, is essential for the establishment of apicobasal polarity. The interactions of the core proteins and the interplay with other processes have been characterized in various epithelial cell lines in detail. Notably, Crb2 and Crb3 are expressed within the kidney and play an important role in the proper function of podocytes and tubules, respectively. The interaction of polarity proteins and components of the Hippo pathway-an evolutionarily highly conserved kinase cascade regulating cell proliferation, organ size, and tissue regeneration-has been discovered recently. Here, we discuss potential molecular and physiological links between the Crumbs complex and the Hippo pathway in renal cells.
Collapse
Affiliation(s)
- U Michgehl
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany.
| | - H Pavenstädt
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany
| | - B Vollenbröker
- Internal Medicine D, University Hospital of Muenster, Albert-Schweitzer-Campus 1, A14, D-48149, Muenster, Germany
| |
Collapse
|
14
|
Spirli C, Villani A, Mariotti V, Fabris L, Fiorotto R, Strazzabosco M. Posttranslational regulation of polycystin-2 protein expression as a novel mechanism of cholangiocyte reaction and repair from biliary damage. Hepatology 2015; 62:1828-39. [PMID: 26313562 PMCID: PMC4681612 DOI: 10.1002/hep.28138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Polycystin-2 (PC2 or TRPPC2), a member of the transient receptor potential channel family, is a nonselective calcium channel. Mutations in PC2 are associated with polycystic liver diseases. PC2-defective cholangiocytes show increased production of cyclic adenosine monophosphate, protein kinase A-dependent activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, hypoxia-inducible factor 1α (HIF-1α)-mediated vascular endothelial growth factor (VEGF) production, and stimulation of cyst growth and progression. Activation of the ERK/HIF-1α/VEGF pathway in cholangiocytes plays a key role during repair from biliary damage. We hypothesized that PC2 levels are modulated during biliary damage/repair, resulting in activation of the ERK/HIF-1α/VEGF pathway. PC2 protein expression, but not its gene expression, was significantly reduced in mouse livers with biliary damage (Mdr2(-/-) knockout, bile duct ligation, 3,5-diethoxycarbonyl-1,4-dihydrocollidine treatment). Treatment of cholangiocytes with proinflammatory cytokines, nitric oxide donors, and endoplasmic reticulum stressors increased ERK1/2 phosphorylation, HIF-1α transcriptional activity, secretion of VEGF, and VEGF receptor type 2 phosphorylation and down-regulated PC2 protein expression without affecting PC2 gene expression. Expression of homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 protein and NEK, ubiquitin-like proteins that promote proteosomal PC2 degradation, was increased. Pretreatment with the proteasome inhibitor MG-132 restored the expression of PC2 in cells treated with cytokines but not in cells treated with nitric oxide donors or with endoplasmic reticulum stressors. In these conditions, PC2 degradation was instead inhibited by interfering with the autophagy pathway. Treatment of 3,5-diethoxycarbonyl-1,4-dihydrocollidine mice and of Mdr2(-/-) mice with the proteasome inhibitor bortezomib restored PC2 expression and significantly reduced the ductular reaction, fibrosis, and phosphorylated ERK1/2. CONCLUSION In response to biliary damage, PC2 expression is modulated posttranslationally by the proteasome or the autophagy pathway, and PC2 down-regulation is associated with activation of ERK1/2 and an increase of HIF-1α-mediated VEGF secretion; treatments able to restore PC2 expression and to reduce ductular reaction and fibrosis may represent a new therapeutic approach in biliary diseases.
Collapse
Affiliation(s)
- Carlo Spirli
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Ambra Villani
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Valeria Mariotti
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA,Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Milan, Italy
| | - Luca Fabris
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA,Department of Molecular Medicine, University of Padova, Italy
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA,Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
15
|
Ong ACM, Harris PC. A polycystin-centric view of cyst formation and disease: the polycystins revisited. Kidney Int 2015; 88:699-710. [PMID: 26200945 PMCID: PMC4589452 DOI: 10.1038/ki.2015.207] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
It is 20 years since the identification of PKD1, the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), followed closely by the cloning of PKD2. These major breakthroughs have led in turn to a period of intense investigation into the function of the two proteins encoded, polycystin-1 and polycystin-2, and how defects in either protein lead to cyst formation and nonrenal phenotypes. In this review, we summarize the major findings in this area and present a current model of how the polycystin proteins function in health and disease.
Collapse
Affiliation(s)
- Albert CM Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, UK
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Kim J, Jo H, Hong H, Kim MH, Kim JM, Lee JK, Heo WD, Kim J. Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat Commun 2015; 6:6781. [PMID: 25849865 DOI: 10.1038/ncomms7781] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 02/26/2015] [Indexed: 12/11/2022] Open
Abstract
Primary cilia exert a profound impact on cell signalling and cell cycle progression. Recently, actin cytoskeleton destabilization has been recognized as a dominant inducer of ciliogenesis, but the exact mechanisms regulating ciliogenesis remain poorly understood. Here we show that the actin cytoskeleton remodelling controls ciliogenesis by regulating transcriptional coactivator YAP/TAZ as well as ciliary vesicle trafficking. Cytoplasmic retention of YAP/TAZ correlates with active ciliogenesis either in spatially confined cells or in cells treated with an actin filament destabilizer. Moreover, knockdown of YAP/TAZ is sufficient to induce ciliogenesis, whereas YAP/TAZ hyperactivation suppresses serum starvation-mediated ciliogenesis. We also identify actin remodelling factors LIMK2 and TESK1 as key players in the ciliogenesis control network in which YAP/TAZ and directional vesicle trafficking are integral components. Our work provides new insights for understanding the link between actin dynamics and ciliogenesis.
Collapse
Affiliation(s)
- Jongshin Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Haiin Jo
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Hyowon Hong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jin Man Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - June-Koo Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Won Do Heo
- 1] Department of Biological Sciences, KAIST, Daejeon 305-701, Korea [2] Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| |
Collapse
|
17
|
Kodaka M, Hata Y. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2015; 72:285-306. [PMID: 25266986 PMCID: PMC11113917 DOI: 10.1007/s00018-014-1742-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified as the signaling that controls organ size in Drosophila, with the core architecture conserved in mammals. In the mammalian Hippo pathway, mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) regulate transcriptional co-activators, Yes-associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ). The Hippo pathway was initially thought to be quite straightforward; however, the identification of additional components has revealed its inherent complexity. Regulation of YAP1 and TAZ is not always dependent on MST1/2 and LATS1/2. MST1/2 and LATS1/2 play various YAP1/TAZ-independent roles, while YAP1 and TAZ cross-talk with other signaling pathways. In this review we focus on YAP1 and TAZ and discuss their regulation, function, and the consequences of their dysregulation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| |
Collapse
|
18
|
Abstract
WWTR1 (also called TAZ in publications. Therefore, TAZ is used in the following description) is a WW domaing-containing transcriptional coactivator, which was first identified as a 14-3-3 binding protein. TAZ is the downstream component in the Hippo pathway, and also has been found to interact with different pathways, such as Wnt, TGFbeta, etc. TAZ is involved in mesenchymal stem cell differentiation as well as tumorigenesis. High level of TAZ has been found in different cancers, such as breast cancer, colon cancer, lung cancer, etc.
Collapse
Affiliation(s)
- Yulei Zhao
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
19
|
Chen Y, Chiang HC, Litchfield P, Pena M, Juang C, Riley DJ. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease. J Biomed Sci 2014; 21:63. [PMID: 25030234 PMCID: PMC4422189 DOI: 10.1186/s12929-014-0063-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. RESULT We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. CONCLUSION Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.
Collapse
Affiliation(s)
- Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California, Gross Hall 1130, Mail Code, 4086, Irvine, CA, 92697, USA.
| | - Huai-Chin Chiang
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Patricia Litchfield
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Michelle Pena
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Charity Juang
- Department of Medicine, Division of Endocrinology, University of California, Gross Hall 1130, Mail Code, 4086, Irvine, CA, 92697, USA.
| | - Daniel J Riley
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
- University Transplant Center, The University of Texas Health Science Center at San Antonio, Medicine/Nephrology, MC 7882, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA.
- Renal Research Division, South Texas Veterans Health Care System, Audie L. Murphy Division, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
20
|
Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 2014; 141:1614-26. [PMID: 24715453 DOI: 10.1242/dev.102376] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies over the past 20 years have defined the Hippo signaling pathway as a major regulator of tissue growth and organ size. Diverse roles for the Hippo pathway have emerged, the majority of which in vertebrates are determined by the transcriptional regulators TAZ and YAP (TAZ/YAP). Key processes regulated by TAZ/YAP include the control of cell proliferation, apoptosis, movement and fate. Accurate control of the levels and localization of these factors is thus essential for early developmental events, as well as for tissue homeostasis, repair and regeneration. Recent studies have revealed that TAZ/YAP activity is regulated by mechanical and cytoskeletal cues as well as by various extracellular factors. Here, I provide an overview of these and other regulatory mechanisms and outline important developmental processes controlled by TAZ and YAP.
Collapse
Affiliation(s)
- Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Room K-620, Boston, MA 02118, USA
| |
Collapse
|
21
|
Patil M, Pabla N, Ding HF, Dong Z. Nek1 interacts with Ku80 to assist chromatin loading of replication factors and S-phase progression. Cell Cycle 2013; 12:2608-16. [PMID: 23851348 DOI: 10.4161/cc.25624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NIMA-related kinases (Neks) play divergent roles in mammalian cells. While several Neks regulate mitosis, Nek1 was reported to regulate DNA damage response, centrosome duplication and primary cilium formation. Whether Nek1 participates in cell cycle regulation is not known. Here we report that loss of Nek1 results in severe proliferation defect due to a delay in S-phase of the cell cycle. Nek1-deficient cells show replication stress and checkpoint activation under normal growth conditions. Nek1 accumulates on the chromatin during normal DNA replication. In response to replication stress, Nek1 is further activated for chromatin localization. Nek1 interacts with Ku80 and, in Nek1-deficient cells chromatin localization of Ku80 and several other DNA replication factors is significantly reduced. Thus, Nek1 may facilitate S-phase progression by interacting with Ku80 and regulating chromatin loading of replication factors.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | | | | | | |
Collapse
|
22
|
Fry AM, O'Regan L, Sabir SR, Bayliss R. Cell cycle regulation by the NEK family of protein kinases. J Cell Sci 2012; 125:4423-33. [PMID: 23132929 DOI: 10.1242/jcs.111195] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Genetic screens for cell division cycle mutants in the filamentous fungus Aspergillus nidulans led to the discovery of never-in-mitosis A (NIMA), a serine/threonine kinase that is required for mitotic entry. Since that discovery, NIMA-related kinases, or NEKs, have been identified in most eukaryotes, including humans where eleven genetically distinct proteins named NEK1 to NEK11 are expressed. Although there is no evidence that human NEKs are essential for mitotic entry, it is clear that several NEK family members have important roles in cell cycle control. In particular, NEK2, NEK6, NEK7 and NEK9 contribute to the establishment of the microtubule-based mitotic spindle, whereas NEK1, NEK10 and NEK11 have been implicated in the DNA damage response. Roles for NEKs in other aspects of mitotic progression, such as chromatin condensation, nuclear envelope breakdown, spindle assembly checkpoint signalling and cytokinesis have also been proposed. Interestingly, NEK1 and NEK8 also function within cilia, the microtubule-based structures that are nucleated from basal bodies. This has led to the current hypothesis that NEKs have evolved to coordinate microtubule-dependent processes in both dividing and non-dividing cells. Here, we review the functions of the human NEKs, with particular emphasis on those family members that are involved in cell cycle control, and consider their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
23
|
Varelas X, Wrana JL. Coordinating developmental signaling: novel roles for the Hippo pathway. Trends Cell Biol 2012; 22:88-96. [DOI: 10.1016/j.tcb.2011.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/13/2011] [Accepted: 10/16/2011] [Indexed: 01/15/2023]
|
24
|
Zalli D, Bayliss R, Fry AM. The Nek8 protein kinase, mutated in the human cystic kidney disease nephronophthisis, is both activated and degraded during ciliogenesis. Hum Mol Genet 2011; 21:1155-71. [PMID: 22106379 PMCID: PMC3277313 DOI: 10.1093/hmg/ddr544] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mutations in the never-in-mitosis A-related kinase, Nek8, are associated with cystic kidney disease in both humans and mice, with Nek8 being the NPHP9 gene in the human juvenile cystic kidney disease, nephronophthisis. Human Nek8/NPHP9 localizes to centrosomes and the proximal region of cilia in dividing and ciliated cells, respectively. However, the regulation of Nek8 kinase activity, as well as its role in ciliogenesis, remains to be defined. Here, by establishing Nek8 kinase assays, we first demonstrate that the localization of Nek8 to centrosomes and cilia is dependent on both kinase activity and the C-terminal non-catalytic RCC1 domain. The kinase domain alone is active, but does not localize correctly, while the RCC1 domain localizes correctly and can be phosphorylated by Nek8. We propose that centrosome recruitment is mediated by the RCC1 domain, but requires a conformational change in the full-length protein that is promoted by autophosphorylation. Interestingly, three human NPHP9-associated mutants retain full kinase activity. However, only two of these, L330F and A497P, localize correctly, suggesting that the third mutant, H425Y, disrupts a centrosome targeting sequence in the RCC1 domain. Importantly, we find that induction of ciliogenesis upon cell cycle exit is accompanied by both activation and proteasomal degradation of Nek8, and that activation is dependent upon phosphorylation within the catalytic domain. Taken together, these findings reveal important insights into the mechanisms through which Nek8 activity and localization are regulated during ciliogenesis.
Collapse
Affiliation(s)
| | | | - Andrew M. Fry
- To whom correspondence should be addressed. Tel: +44 1162297069; Fax: +44 1162297018;
| |
Collapse
|
25
|
Abstract
The Hippo pathway, a signaling cascade that controls cell cycle progression, apoptosis and cell differentiation, has emerged as a fundamental regulator of many physiological and pathological processes. Recent studies have revealed a complex network of interactions directing Hippo pathway activity, and have connected this pathway with other key signaling pathways. Such crosstalk has uncovered novel roles for Hippo signaling, including regulation of TGFβ/SMAD and WNT/β-catenin pathways. This review highlights some of the recent findings in the Hippo field with an emphasis on how the Hippo pathway is integrated with other pathways to mediate diverse processes.
Collapse
|
26
|
Liu C, Huang W, Lei Q. Regulation and function of the TAZ transcription co-activator. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 2:247-256. [PMID: 22003437 PMCID: PMC3193294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
TAZ (WWTR1), identified as a 14-3-3 binding protein with a PDZ binding motif, is implicated in mesenchymal stem cell differentiation. TAZ has been shown to be negatively regulated by phosphorylation-dependent and phosphorylation-independent mechanisms. Coupled with ASPP2, PP1 dephosphorylates TAZ to activate TAZ. TEADs mediate TAZ function in promoting cell proliferation and epithelial-mesenchymal transition (EMT). TAZ senses different cellular signals such as cell density and the extracellular matrix stiffness. Significantly, TAZ is overexpressed in breast cancer samples and papillary thyroid carcinoma tissues. These results indicate that TAZ plays an important role in cancer development and presents a novel target for TAZ overexpressed cancer therapy.
Collapse
Affiliation(s)
- Chenying Liu
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular BiologyShanghai Medical College
- Molecular and Cell Biology Lab, Institutes of Biomedical SciencesFudan University, Shanghai 200032China
| | - Wei Huang
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular BiologyShanghai Medical College
- Molecular and Cell Biology Lab, Institutes of Biomedical SciencesFudan University, Shanghai 200032China
| | - Qunying Lei
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular BiologyShanghai Medical College
- Molecular and Cell Biology Lab, Institutes of Biomedical SciencesFudan University, Shanghai 200032China
| |
Collapse
|
27
|
Dutcher SK, Lin H. Tying TAZ and Nek1 into polycystic kidney disease through polycystin 2 levels. J Am Soc Nephrol 2011; 22:791-3. [PMID: 21474564 DOI: 10.1681/asn.2011030256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|