1
|
Bone morphogenetic protein 1.3 inhibition decreases scar formation and supports cardiomyocyte survival after myocardial infarction. Nat Commun 2022; 13:81. [PMID: 35013172 PMCID: PMC8748453 DOI: 10.1038/s41467-021-27622-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the high prevalence of ischemic heart diseases worldwide, no antibody-based treatment currently exists. Starting from the evidence that a specific isoform of the Bone Morphogenetic Protein 1 (BMP1.3) is particularly elevated in both patients and animal models of myocardial infarction, here we assess whether its inhibition by a specific monoclonal antibody reduces cardiac fibrosis. We find that this treatment reduces collagen deposition and cross-linking, paralleled by enhanced cardiomyocyte survival, both in vivo and in primary cultures of cardiac cells. Mechanistically, we show that the anti-BMP1.3 monoclonal antibody inhibits Transforming Growth Factor β pathway, thus reducing myofibroblast activation and inducing cardioprotection through BMP5. Collectively, these data support the therapeutic use of anti-BMP1.3 antibodies to prevent cardiomyocyte apoptosis, reduce collagen deposition and preserve cardiac function after ischemia. Here the authors show that a monoclonal antibody against a soluble isoform of Bone Morphogenetic Protein 1 prevents cardiac cell death, reducing fibrosis and preserving cardiac function after myocardial ischemia.
Collapse
|
2
|
Ye J, Wang Z, Wang M, Xu Y, Zeng T, Ye D, Liu J, Jiang H, Lin Y, Wan J. Increased kielin/chordin-like protein levels are associated with the severity of heart failure. Clin Chim Acta 2018; 486:381-386. [PMID: 30144436 DOI: 10.1016/j.cca.2018.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies demonstrated that the transforming growth factor (TGF) β superfamily, including TGF-βs and bone morphogenetic proteins (BMPs), plays important roles in cardiovascular diseases. The kielin/chordin-like protein (KCP) is a secreted protein that regulates the expression and function of TGF-βs and BMPs. However, the role of KCP during heart failure (HF) remains unknown. The present study aimed to investigate the cardiac expression of KCP in human failing hearts. METHODS The human failing heart samples from patients with dilated cardiomyopathy (DCM, n = 12) and ischemic cardiomyopathy (ICM, n = 12) were collected, and normal heart (n = 8) samples from unmatched donors were collected as controls. Collagen volume, KCP levels, and mRNA levels of several BMPs in left ventricles (LV) of all hearts were measured. RESULTS The KCP levels were significantly higher in human failing hearts than in normal hearts. KCP levels were positively associated with hypertrophy markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC). In addition, KCP levels were also positively associated with left ventricular end-diastolic dimension (LVEDD), collagen Iα and collagen IIIα expression but were negatively associated with left ventricular ejection fraction (LVEF). Furthermore, increased TGF-β1, BMP2/4/6/10 and reduced BMP7 levels were observed, and positive correlations between KCP and TGF-β1 and negative correlation between KCP and BMP2/7 were found, but not for BMP4/6/10. CONCLUSIONS KCP was closely associated with heart failure. The regulation of BMP2/7 and TGF-β1 expression may be the possible mechanisms.
Collapse
Affiliation(s)
- Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Tao Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|