1
|
Duicu C, Pitea AM, Săsăran OM, Cozea I, Man L, Bănescu C. Nephrogenic diabetes insipidus in children (Review). Exp Ther Med 2021; 22:746. [PMID: 34055061 PMCID: PMC8138272 DOI: 10.3892/etm.2021.10178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Nephrogenic diabetes insipidus (NDI) is characterized by impaired urinary concentrating ability, despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). NDI can be inherited or acquired. NDI can result from genetic abnormalities, such as mutations in the vasopressin V2 receptor (AVPR2) or the aquaporin-2 (AQP2) water channel, or acquired causes, such as chronic lithium therapy. Congenital NDI is a rare condition. Mutations in AVPR2 are responsible for approximately 90% of patients with congenital NDI, and they have an X-linked pattern of inheritance. In approximately 10% of patients, congenital NDI has an autosomal recessive or dominant pattern of inheritance with mutations in the AQP2 gene. In 2% of cases, the genetic cause is unknown. The main symptoms at presentation include growth retardation, vomiting or feeding concerns, polyuria plus polydipsia, and dehydration. Without treatment, most patients fail to grow normally, and present with associated constipation, urological complication, megacystis, trabeculated bladder, hydroureter, hydronephrosis, and mental retardation. Treatment of NDI consist of sufficient water intake, low-sodium diet, diuretic thiazide, sometimes in combination with a cyclooxygenase (COX) inhibitor (indomethacin) or nonsteroidal anti-inflammatory drugs (NSAIDs), or hydrochlorothiazide in combination with amiloride. Some authors note a generally favorable long-term outcome and an apparent loss of efficacy of medical treatment during school age.
Collapse
Affiliation(s)
- Carmen Duicu
- Department of Pediatrics, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureş, Romania
| | - Ana Maria Pitea
- Department of Pediatrics, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureş, Romania
| | - Oana Maria Săsăran
- Department of Pediatric Cardiology, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureş, Romania
| | - Iulia Cozea
- Department of Pediatrics, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureş, Romania
| | - Lidia Man
- Department of Pediatrics, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureş, Romania
| | - Claudia Bănescu
- Department of Genetics, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureş, Romania
| |
Collapse
|
2
|
de Groot T, Ebert LK, Christensen BM, Andralojc K, Cheval L, Doucet A, Mao C, Baumgarten R, Low BE, Sandhoff R, Wiles MV, Deen PMT, Korstanje R. Identification of Acer2 as a First Susceptibility Gene for Lithium-Induced Nephrogenic Diabetes Insipidus in Mice. J Am Soc Nephrol 2019; 30:2322-2336. [PMID: 31558682 DOI: 10.1681/asn.2018050549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lithium, mainstay treatment for bipolar disorder, causes nephrogenic diabetes insipidus and hypercalcemia in about 20% and 10% of patients, respectively, and may lead to acidosis. These adverse effects develop in only a subset of patients treated with lithium, suggesting genetic factors play a role. METHODS To identify susceptibility genes for lithium-induced adverse effects, we performed a genome-wide association study in mice, which develop such effects faster than humans. On day 8 and 10 after assigning female mice from 29 different inbred strains to normal chow or lithium diet (40 mmol/kg), we housed the animals for 48 hours in metabolic cages for urine collection. We also collected blood samples. RESULTS In 17 strains, lithium treatment significantly elevated urine production, whereas the other 12 strains were not affected. Increased urine production strongly correlated with lower urine osmolality and elevated water intake. Lithium caused acidosis only in one mouse strain, whereas hypercalcemia was found in four strains. Lithium effects on blood pH or ionized calcium did not correlate with effects on urine production. Using genome-wide association analyses, we identified eight gene-containing loci, including a locus containing Acer2, which encodes a ceramidase and is specifically expressed in the collecting duct. Knockout of Acer2 led to increased susceptibility for lithium-induced diabetes insipidus development. CONCLUSIONS We demonstrate that genome-wide association studies in mice can be used successfully to identify susceptibility genes for development of lithium-induced adverse effects. We identified Acer2 as a first susceptibility gene for lithium-induced diabetes insipidus in mice.
Collapse
Affiliation(s)
- Theun de Groot
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Lena K Ebert
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department II of Internal Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Karolina Andralojc
- Molecular Biology.,Biochemistry, and.,Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lydie Cheval
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France.,Physiology of Renal and Tubulopathies, CNRS (Centre National de la Recherche Scientifique) ERL 8228, Cordeliers Research Center, INSERM, Sorbonne University, Sorbonne Paris Cité University, Paris Descartes University, Paris Diderot University, Paris, France
| | - Alain Doucet
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, New York.,Stony Brook Cancer Center, Stony Brook, New York
| | | | | | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; and.,Centre for Applied Sciences at Technical Universities (ZAFH)-Applied Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| | | | | | | |
Collapse
|
3
|
Aquaporins in Renal Diseases. Int J Mol Sci 2019; 20:ijms20020366. [PMID: 30654539 PMCID: PMC6359174 DOI: 10.3390/ijms20020366] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aquaporins (AQPs) are a family of highly selective transmembrane channels that mainly transport water across the cell and some facilitate low-molecular-weight solutes. Eight AQPs, including AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, and AQP11, are expressed in different segments and various cells in the kidney to maintain normal urine concentration function. AQP2 is critical in regulating urine concentrating ability. The expression and function of AQP2 are regulated by a series of transcriptional factors and post-transcriptional phosphorylation, ubiquitination, and glycosylation. Mutation or functional deficiency of AQP2 leads to severe nephrogenic diabetes insipidus. Studies with animal models show AQPs are related to acute kidney injury and various chronic kidney diseases, such as diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Experimental data suggest ideal prospects for AQPs as biomarkers and therapeutic targets in clinic. This review article mainly focuses on recent advances in studying AQPs in renal diseases.
Collapse
|
4
|
Macau RA, da Silva TN, Silva JR, Ferreira AG, Bravo P. Use of acetazolamide in lithium-induced nephrogenic diabetes insipidus: a case report. Endocrinol Diabetes Metab Case Rep 2018; 2018:EDM-17-0154. [PMID: 29479446 PMCID: PMC5820740 DOI: 10.1530/edm-17-0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 11/20/2022] Open
Abstract
Lithium-induced nephrogenic diabetes insipidus (Li-NDI) is a rare and difficult-to-treat condition. A study in mice and two recent papers describe the use of acetazolamide in Li-NDI in 7 patients (a case report and a 6 patient series). We describe the case of a 63-year-old woman with bipolar disorder treated with lithium and no previous history of diabetes insipidus. She was hospitalized due to a bowel obstruction and developed severe dehydration after surgery when she was water deprived. After desmopressin administration and unsuccessful thiazide and amiloride treatment, acetazolamide was administrated to control polyuria and hydroelectrolytic disorders without significant side effects. To our knowledge, this is the third publication on acetazolamide use in Li-NDI patients.
Collapse
Affiliation(s)
| | | | | | | | - Pedro Bravo
- Nephrology Department, Hospital Garcia de Orta
| |
Collapse
|