1
|
Gurung RL, Liu JJ, Liu S, Lee J, Zheng H, Chan C, Ang K, Lim SC. Association of Plasma Angiogenin With Risk of Incident End-Stage Kidney Disease in Individuals With Type 2 Diabetes. Diabetes 2025; 74:998-1006. [PMID: 40036063 DOI: 10.2337/db24-0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
We investigated the association between plasma angiogenin and the risk of progression to end-stage kidney disease (ESKD) in patients with type 2 diabetes (T2D) and attempted to infer the causal relationship between plasma angiogenin and chronic kidney disease. A total of 1,863 outpatients with T2D were included in this prospective cohort study. ESKD was defined as a composite of progression to sustained estimated glomerular filtration rate (eGFR) <15 mL/min/1.73 m2, maintenance dialysis, or death due to renal causes. The secondary outcome was rapid kidney function decline defined as a eGFR decline of 5 mL/min/1.73 m2 or greater per year. Over a median follow-up of 9.3 years, 125 incident ESKD events were identified. Elevated plasma angiogenin levels were associated with an increased risk of incident ESKD (adjusted hazard ratio 1.25 [95% CI 1.01-1.55], per 1 SD) independent of cardiorenal risk factors including baseline eGFR and albuminuria. A high level of plasma angiogenin was also associated with an increased risk for rapid kidney function decline (adjusted odds ratio 1.31 [95% CI 1.07-1.61], per 1 SD). A two-sample Mendelian randomization approach suggested a potential causal relationship between plasma angiogenin and chronic kidney disease. Plasma angiogenin may be a novel biomarker and potential therapeutic target for progressive kidney disease in patients with T2D. ARTICLE HIGHLIGHTS We investigated the association of plasma angiogenin with the risk of incident end-stage kidney disease (ESKD) in patients with type 2 diabetes. A high level of plasma angiogenin is independently associated with an increased risk for incident ESKD. A two-sample Mendelian randomization analysis suggested angiogenin may be causally involved in pathogenesis of chronic kidney disease. Plasma angiogenin may be a novel biomarker and potential therapeutic target for treatment of progressive kidney disease in patients with diabetes.
Collapse
Affiliation(s)
- Resham L Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Janus Lee
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Huili Zheng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Clara Chan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Heath, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
2
|
Bejoy J, Farry JM, Qian ES, Dearing CH, Ware LB, Bastarache JA, Woodard LE. Ascorbate protects human kidney organoids from damage induced by cell-free hemoglobin. Dis Model Mech 2023; 16:dmm050342. [PMID: 37942584 PMCID: PMC10695115 DOI: 10.1242/dmm.050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin M. Farry
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Eddie S. Qian
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Curtis H. Dearing
- Vanderbilt Experimental Research Training Inclusion Community Engagement Skills (VERTICES) program, Vanderbilt University, Nashville, TN 37232, USA
| | - Lorraine B. Ware
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julie A. Bastarache
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Lauren E. Woodard
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| |
Collapse
|
3
|
Wu D, Huang LF, Chen XC, Huang XR, Li HY, An N, Tang JX, Liu HF, Yang C. Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis 2023; 14:473. [PMID: 37500613 PMCID: PMC10374544 DOI: 10.1038/s41419-023-05905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The endoplasmic reticulum (ER) plays important roles in biosynthetic and metabolic processes, including protein and lipid synthesis, Ca2+ homeostasis regulation, and subcellular organelle crosstalk. Dysregulation of ER homeostasis can cause toxic protein accumulation, lipid accumulation, and Ca2+ homeostasis disturbance, leading to cell injury and even death. Accumulating evidence indicates that the dysregulation of ER homeostasis promotes the onset and progression of kidney diseases. However, maintaining ER homeostasis through unfolded protein response, ER-associated protein degradation, autophagy or ER-phagy, and crosstalk with other organelles may be potential therapeutic strategies for kidney disorders. In this review, we summarize the recent research progress on the relationship and molecular mechanisms of ER dysfunction in kidney pathologies. In addition, the endogenous protective strategies for ER homeostasis and their potential application for kidney diseases have been discussed.
Collapse
Affiliation(s)
- Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
4
|
Toll-like receptors 2 and 4 stress signaling and sodium-glucose cotransporter-2 in kidney disease. Mol Cell Biochem 2022:10.1007/s11010-022-04652-5. [PMID: 36586092 DOI: 10.1007/s11010-022-04652-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Kidney disease is the 6th fastest-growing cause of death and a serious global health concern that urges effective therapeutic options. The inflammatory response is an initial reaction from immune and parenchymal cells in kidney diseases. Toll-like receptors (TLR) 2 and 4 are highly expressed by various kidney cells and respond to 'signaling danger' proteins, such as high mobility group box binding protein 1 (HMGB1) and prompt the progression of kidney disease by releasing inflammatory mediators. Burgeoning reports suggest that both SGLT2 and ER stress elevates TLR2/4 signaling via different axis. Moreover, SGLT2 signaling aggravates inflammation under the disease condition by promoting the NLR family pyrin domain-containing three inflammasomes and ER stress. Intriguingly, TLR2/4 downstream adaptors activate ER stress regulators. The above-discussed interactions imply that TLR2/4 does more than immune response during kidney disease. Here, we discuss in detail evidence of the roles and regulation of TLR2/4 in the context of a relationship between ER stress and SGLT2. Also, we highlighted different preclinical studies of SGLT2 inhibitors against TLR2/4 signaling in various kidney diseases. Moreover, we discuss the observational and interventional evidence about the relation between TLR2/4, ER stress, and SGLT2, which may represent the TLR2/4 as a potential therapeutic target for kidney disease.
Collapse
|
5
|
Zhang L, Gong J, Yaqiong L. Spliced X-Box binding protein 1 predicts satisfying responsiveness and survival benefit toward bortezomib-based therapy in multiple myeloma patients. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1102-1109. [PMID: 36121128 DOI: 10.1080/16078454.2022.2117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Spliced X-Box binding protein 1 (sXBP1) modulates malignant cell activities and enhances the bortezomib sensitivity in multiple myeloma (MM) cells, while its clinical value in MM patients remains elusive. Hence, the current study aimed to explore this issue, particularly the correlation of sXBP1 with treatment outcomes of bortezomib-based therapy in MM patients. METHODS Totally, 97 newly-diagnosed MM patients undergoing bortezomib-based therapy, 20 disease controls (DCs), and 20 health controls (HCs) were enrolled. Bone marrow plasma cell samples were acquired to determine sXBP1 by RT-qPCR. RESULTS sXBP1 was lowest in MM patients, followed by DCs, and highest in HCs (P < 0.001). Beyond that, sXBP1 discriminated MM patients from DCs with area under curve (AUC) of 0.728 (95% confidence interval (CI): 0.610-0.847) and HCs with AUC of 0.855 (95% CI: 0.771-0.939). sXBP1 was negatively associated with t (4; 14) (P = 0.047), Revised International Staging System stage (P = 0.008). There was a trend that sXBP1 was negatively correlated with β2-MG, LDH, and t (14; 16) (without statistical significance). sXBP1 was higher in patients with complete response (CR) compared to those with non-CR (P = 0.017) and higher in patients with objective response rate (ORR) compared to those with non-ORR (P = 0.006). sXBP1 (high vs. low) was linked with longer progression-free survival (PFS) (P = 0.011) and overall survival (P = 0.045) in MM patients. Additionally, sXBP1 (high vs. low) (P = 0.025) independently estimated a longer PFS. CONCLUSION sXBP1 forecasts a favorable treatment response and survival benefit toward bortezomib-based therapy in multiple myeloma patients.
Collapse
Affiliation(s)
- Lingli Zhang
- Department of Hematology, Dazhou Central Hospital, Sichuan Province, People's Republic of China
| | - Jichang Gong
- Department of Hematology, Dazhou Central Hospital, Sichuan Province, People's Republic of China
| | - Li Yaqiong
- Department of Hematology, Dazhou Central Hospital, Sichuan Province, People's Republic of China
| |
Collapse
|
6
|
Porter AW, Brodsky JL, Buck TM. Emerging links between endoplasmic reticulum stress responses and acute kidney injury. Am J Physiol Cell Physiol 2022; 323:C1697-C1703. [PMID: 36280391 PMCID: PMC9722262 DOI: 10.1152/ajpcell.00370.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 01/26/2023]
Abstract
All cell types must maintain homeostasis under periods of stress. To prevent the catastrophic effects of stress, all cell types also respond to stress by inducing protective pathways. Within the cell, the endoplasmic reticulum (ER) is exquisitely stress-sensitive, primarily because this organelle folds, posttranslationally processes, and sorts one-third of the proteome. In the 1990s, a specialized ER stress response pathway was discovered, the unfolded protein response (UPR), which specifically protects the ER from damaged proteins and toxic chemicals. Not surprisingly, UPR-dependent responses are essential to maintain the function and viability of cells continuously exposed to stress, such as those in the kidney, which have high metabolic demands, produce myriad protein assemblies, continuously filter toxins, and synthesize ammonia. In this mini-review, we highlight recent articles that link ER stress and the UPR with acute kidney injury (AKI), a disease that arises in ∼10% of all hospitalized individuals and nearly half of all people admitted to intensive care units. We conclude with a discussion of prospects for treating AKI with emerging drugs that improve ER function.
Collapse
Affiliation(s)
- Aidan W Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, Nephrology Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Li C, Chen YM. Endoplasmic Reticulum-Associated Biomarkers for Molecular Phenotyping of Rare Kidney Disease. Int J Mol Sci 2021; 22:2161. [PMID: 33671535 PMCID: PMC7926397 DOI: 10.3390/ijms22042161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is the central site for folding, post-translational modifications, and transport of secretory and membrane proteins. An imbalance between the load of misfolded proteins and the folding capacity of the ER causes ER stress and an unfolded protein response. Emerging evidence has shown that ER stress or the derangement of ER proteostasis contributes to the development and progression of a variety of glomerular and tubular diseases. This review gives a comprehensive summary of studies that have elucidated the role of the three ER stress signaling pathways, including inositol-requiring enzyme 1 (IRE1), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 (ATF6) signaling in the pathogenesis of kidney disease. In addition, we highlight the recent discovery of ER-associated biomarkers, including MANF, ERdj3, ERdj4, CRELD2, PDIA3, and angiogenin. The implementation of these novel biomarkers may accelerate early diagnosis and therapeutic intervention in rare kidney disease.
Collapse
Affiliation(s)
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
8
|
Tousson-Abouelazm N, Papillon J, Guillemette J, Cybulsky AV. Urinary ERdj3 and mesencephalic astrocyte-derived neutrophic factor identify endoplasmic reticulum stress in glomerular disease. J Transl Med 2020; 100:945-958. [PMID: 32203149 DOI: 10.1038/s41374-020-0416-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
Podocyte injury and endoplasmic reticulum (ER) stress have been implicated in the pathogenesis of various glomerular diseases. ERdj3 (DNAJB11) and mesencephalic astrocyte-derived neurotrophic factor (MANF) are ER chaperones lacking the KDEL motif, and may be secreted extracellularly. Since podocytes reside in the urinary space, we examined if podocyte injury is associated with secretion of KDEL-free ER chaperones from these cells into the urine, and if chaperones in the urine reflect ER stress in glomerulonephritis. In cultured podocytes, ER stress increased ERdj3 and MANF intracellularly and in culture medium, whereas GRP94 (KDEL chaperone) increased only intracellularly. ERdj3 and MANF secretion was blocked by the secretory trafficking inhibitor, brefeldin A. Urinary ERdj3 and MANF increased in rats injected with tunicamycin (in the absence of proteinuria). After induction of passive Heymann nephritis (PHN) and puromycin aminonucleoside nephrosis (PAN), there was an increase in glomerular ER stress, and appearance of ERdj3 and MANF in the urine, coinciding with the onset of proteinuria. Rats with PHN were treated with the chemical chaperone, 4-phenyl butyrate (PBA), starting at the time of disease induction, or after disease was established. In both protocols, 4-PBA reduced proteinuria and urinary ER chaperone secretion, compared with PHN rats treated with saline (control). In conclusion, urinary ERdj3 and MANF reflect glomerular ER stress. 4-PBA protected against complement-mediated podocyte injury and the therapeutic response could be monitored by urinary ERdj3 and MANF.
Collapse
Affiliation(s)
- Nihad Tousson-Abouelazm
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.,Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
The cellular prion protein is a stress protein secreted by renal tubular cells and a urinary marker of kidney injury. Cell Death Dis 2020; 11:243. [PMID: 32303684 PMCID: PMC7165184 DOI: 10.1038/s41419-020-2430-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Endoplasmic Reticulum (ER) stress underlies the pathogenesis of numerous kidney diseases. A better care of patients with kidney disease involves the identification and validation of ER stress biomarkers in the early stages of kidney disease. For the first time to our knowledge, we demonstrate that the prion protein PrPC is secreted in a conventional manner by ER-stressed renal epithelial cell under the control of the transcription factor x-box binding protein 1 (XBP1) and can serve as a sensitive urinary biomarker for detecting tubular ER stress. Urinary PrPC elevation occurs in patients with chronic kidney disease. In addition, in patients undergoing cardiac surgery, detectable urine levels of PrPC significantly increase after cardiopulmonary bypass, a condition associated with activation of the IRE1-XBP1 pathway in the kidney. In conclusion, our study has identified PrPC as a novel urinary ER stress biomarker with potential utility in early diagnosis of ongoing acute or chronic kidney injury.
Collapse
|
10
|
Le Pape S, Pasini-Chabot O, Couturier P, Delpech PO, Volmer R, Quellard N, Ploeg R, Hauet T, Thuillier R. Decoding cold ischaemia time impact on kidney graft: the kinetics of the unfolded protein response pathways. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S873-S885. [PMID: 30280609 DOI: 10.1080/21691401.2018.1518908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The relationship between cold ischaemia time (CIT) and adverse outcome is now acknowledged. However, the underlying mechanisms remain to be defined, which slows the development of adapted therapeutics and diagnostics. We explored the impact of CIT in both preclinical and in vitro models of preservation. We determined that the endoplasmic reticulum (ER) and its stress response (unfolded protein response, UPR) were regulated in close association with CIT; the eIF2α-ATF4 pathway was inhibited early (1-8 h) at the detriment of cell survival, while the ATF6 pathway was activated late (12-24 h) and associated with cell death. The IRE1α-XBP1 branch was activated at reperfusion only if CIT extended beyond 8 h, and had a dual role on cell fate - deleterious through IRE1's RNase activity and beneficial through IRE1α other roles. Finally, the pro-apoptotic factor CHOP was a common target of both ATF6 and IRE1α pathways and was associated with elongated CIT and increased cell death. Microarray analysis of human transplanted kidney confirmed that UPR markers were regulated by CIT and that CHOP was associated with adverse outcome. We show that UPR could be a critical pathway explaining the relationship between CIT and graft outcome, highlighting the potential for UPR-based therapeutics and diagnostics to improve transplantation.
Collapse
Affiliation(s)
- Sylvain Le Pape
- a Inserm, U1082 IRTOMIT Poitiers , France.,b Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Ophélie Pasini-Chabot
- a Inserm, U1082 IRTOMIT Poitiers , France.,c CHU Poitiers, Service de Biochimie , Pôle BIOSPHARM , Poitiers , France
| | - Pierre Couturier
- c CHU Poitiers, Service de Biochimie , Pôle BIOSPHARM , Poitiers , France
| | - Pierre-Olivier Delpech
- a Inserm, U1082 IRTOMIT Poitiers , France.,d CHU Poitiers, Service d'Urologie , Pôle DUNE , Poitiers , France
| | - Romain Volmer
- e University of Cambridge Metabolic Research Laboratories and National Institute for Health Research , Cambridge , UK
| | - Nathalie Quellard
- f CHU de Poitiers, Dept d'Anatomo-pathologie, Pôle BIOSPHARM , Poitiers , France
| | - Rutger Ploeg
- g Nuffield Department of Surgical Sciences , University of Oxford , Oxford , UK
| | - Thierry Hauet
- a Inserm, U1082 IRTOMIT Poitiers , France.,b Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,c CHU Poitiers, Service de Biochimie , Pôle BIOSPHARM , Poitiers , France.,g Nuffield Department of Surgical Sciences , University of Oxford , Oxford , UK.,h Institut national de la recherche agronomique , IBiSA Plateforme 'MOPICT', Unité expérimentale Génétique, expérimentations et systèmes innovants, Domaine Expérimental du Magneraud , Surgères , France
| | - Raphaël Thuillier
- a Inserm, U1082 IRTOMIT Poitiers , France.,b Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,c CHU Poitiers, Service de Biochimie , Pôle BIOSPHARM , Poitiers , France
| |
Collapse
|
11
|
Gallazzini M, Pallet N. Endoplasmic reticulum stress and kidney dysfunction. Biol Cell 2018; 110:205-216. [DOI: 10.1111/boc.201800019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Morgan Gallazzini
- INSERM U1151 - CNRS UMR 8253; Institut Necker Enfants Malades; Paris France
- INSERM U1147; Centre Universitaire des Saints Pères; Paris France
| | - Nicolas Pallet
- INSERM U1151 - CNRS UMR 8253; Institut Necker Enfants Malades; Paris France
- INSERM U1147; Centre Universitaire des Saints Pères; Paris France
- Université Paris Descartes; Paris France
- Service de Néphrologie; Hôpital Européen Georges Pompidou; Paris
- Service de Biochimie; Hôpital Européen Gorges Pompidou; Paris France
| |
Collapse
|
12
|
Yan M, Shu S, Chunyuan G, Tang C, Dong Z. Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury. Ann Med 2018; 50:381-390. [PMID: 29895209 PMCID: PMC6333465 DOI: 10.1080/07853890.2018.1489142] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a medical condition characterized by kidney damage with a rapid decline of renal function, which is associated with high mortality and morbidity. Recent research has further established an intimate relationship between AKI and chronic kidney disease. Perturbations of kidney cells in AKI result in the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER), leading to unfolded protein response (UPR) or ER stress. In this review, we analyze the role and regulation of ER stress in AKI triggered by renal ischemia-reperfusion and cisplatin nephrotoxicity. The balance between the two major components of UPR, the adaptive pathway and the apoptotic pathway, plays a critical role in determining the cell fate in ER stress. The adaptive pathway is evoked to attenuate translation, induce chaperones, maintain protein homeostasis and promote cell survival. Prolonged ER stress activates the apoptotic pathway, resulting in the elimination of dysfunctional cells. Therefore, regulating ER stress in kidney cells may provide a therapeutic target in AKI. KEY MESSAGES Perturbations of kidney cells in acute kidney injury result in the accumulation of unfolded and misfolded proteins in ER, leading to unfolded protein response (UPR) or ER stress. The balance between the adaptive pathway and the apoptotic pathway of UPR plays a critical role in determining the cell fate in ER stress. Modulation of ER stress in kidney cells may provide a therapeutic strategy for acute kidney injury.
Collapse
Affiliation(s)
- Mingjuan Yan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Nephrology, The First people’s Hospital of Changde City, Changde, Hunan, China
| | - Shaoqun Shu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo Chunyuan
- Department of Nephrology, The First people’s Hospital of Changde City, Changde, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, U.S.A
| |
Collapse
|
13
|
6-mercaptopurine promotes energetic failure in proliferating T cells. Oncotarget 2018; 8:43048-43060. [PMID: 28574837 PMCID: PMC5522126 DOI: 10.18632/oncotarget.17889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects.
Collapse
|
14
|
Fohlen B, Tavernier Q, Huynh TM, Caradeuc C, Le Corre D, Bertho G, Cholley B, Pallet N. Real-Time and Non-invasive Monitoring of the Activation of the IRE1α-XBP1 Pathway in Individuals with Hemodynamic Impairment. EBioMedicine 2017; 27:284-292. [PMID: 29276149 PMCID: PMC5828547 DOI: 10.1016/j.ebiom.2017.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Many stressors that are encountered upon kidney injury are likely to trigger endoplasmic reticulum (ER) stress, subsequently activating transcriptional, translational and metabolic reprogramming. Monitoring early cellular adaptive responses engaged after hemodynamic impairment yields may represent a clinically relevant approach. However, a non-invasive method for detecting the ER stress response has not been developed. We combined a metabolomic approach with genetic marker analyses using urine from individuals undergoing scheduled cardiac surgery under cardiopulmonary bypass to investigate the feasibility and significance of monitoring the ER stress response in the kidney. We developed an original method based on fragment analysis that measures urinary levels of the spliced X-box binding protein 1 (sXBP1) mRNA as a proxy of inositol-requiring enzyme 1α (IRE1α) activity because sXBP1 is absolutely sensitive and specific for ER stress. The early engagement of the ER stress response after ischemic stress is critical for protecting against tissue damage, and individuals who mount a robust adaptive response are protected against AKI. The clinical consequences of our findings are of considerable importance because ER stress is involved in numerous conditions that lead to AKI and chronic kidney disease; in addition, the detection of ER stress is straightforward and immediately available in routine practice. Endoplasmic Reticulum (ER) stress is involved in the pathophysiology of numerous kidney diseases. We developed a method based on fragment analysis that measures urinary levels of XBP1 mRNA to detect renal ER stress. ER stress occurs early after cardiopulmonary bypass, a procedure leading to acute kidney injury. The detection of renal ER stress in this context can predict the occurrence of acute kidney injury.
The better care of patients with kidney disease requires the identification of biomarkers of ongoing tissue injury to provide therapies to slow disease progression. In this study, we have developed for the first time a non-invasive (urinary) biomarker of a protective cellular process called Endoplasmic Reticulum stress that occurs early in the kidney after ischemic injury. Renal ischemic injury follows cardiac surgery and could lead to acute kidney injury. Our results indicate that the early detection of individuals who do not activate Endoplasmic Reticulum stress could help to identify individuals who will develop acute kidney injury.
Collapse
Affiliation(s)
- Baptiste Fohlen
- Department d'Anésthésie et de Réanimation Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Université Paris Descartes, Paris, France
| | - Quentin Tavernier
- Université Paris Descartes, Paris, France; Institut National de la Santé et la Recherche Médicale (INSERM) U1147, Paris, France
| | - Thi-Mum Huynh
- Department d'Anésthésie et de Réanimation Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Université Paris Descartes, Paris, France
| | - Cédric Caradeuc
- Université Paris Descartes, Paris, France; Centre National pour le Recherche Scientifique (CNRS) U8601, Paris, France
| | - Delphine Le Corre
- Université Paris Descartes, Paris, France; Institut National de la Santé et la Recherche Médicale (INSERM) U1147, Paris, France
| | - Gildas Bertho
- Université Paris Descartes, Paris, France; Centre National pour le Recherche Scientifique (CNRS) U8601, Paris, France
| | - Bernard Cholley
- Department d'Anésthésie et de Réanimation Cardiovasculaire, Hôpital Européen Georges Pompidou, Paris, France; Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Université Paris Descartes, Paris, France
| | - Nicolas Pallet
- Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Université Paris Descartes, Paris, France; Institut National de la Santé et la Recherche Médicale (INSERM) U1147, Paris, France; Service de Néphrologie, Hôpital Européen Georges Pompidou, Paris, France; Service de Biochimie, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
15
|
A Comparative Study of the Predictive Values of Urinary Acute Kidney Injury Markers Angiogenin and Kidney Injury Molecule 1 for the Outcomes of Kidney Allografts. Transplant Direct 2017; 3:e204. [PMID: 28979926 PMCID: PMC5585420 DOI: 10.1097/txd.0000000000000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Supplemental digital content is available in the text. Background Whether injury-related molecules in urines of individuals with ischemia-reperfusion injury (IRI) are independent predictors of graft outcomes and provide additional information compared with usual risk factors remains to be established. Methods We explored a cohort of 244 kidney transplant recipients who systematically had a urine collection 10 days after transplantation. The injury-related markers kidney injury molecule-1 (KIM-1) and angiogenin (ANG) levels in urines were measured. We determined the prognostic values of these markers on graft outcomes. Results Urinary KIM-1 and ANG concentrations were strongly correlated to each other and were significantly and independently associated with cold ischemia time, delayed graft function, and plasma creatinine 10 days after transplantation, indicating that these markers reflect the severity of IRI. However, urinary ANG and KIM-1 were not predictive of histological changes on protocol biopsies performed 3 and 12 months after transplantation. Finally, urinary ANG and urinary KIM-1 were not associated with graft survival. Conclusions Together, our results indicate that, in a cohort of 244 kidney transplant recipients, urinary ANG and KIM-1 levels in a single measurement 10 days after transplantation reflect the severity of IRI after kidney transplantation, but are neither independent predictors of renal function, histological changes and graft survival.
Collapse
|