1
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation Code of Human Nucleophosmin Includes Four Cryptic Sites for Hierarchical Binding of 14-3-3 Proteins. J Mol Biol 2024; 436:168592. [PMID: 38702038 DOI: 10.1016/j.jmb.2024.168592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phosphosites in NPM1 reside within signal sequences, this work suggests a mechanism of NPM1 regulation by which NPM1 phosphorylation can promote 14-3-3 binding to affect NPM1 shuttling between cell compartments. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
2
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation code of human nucleophosmin includes four cryptic sites for hierarchical binding of 14-3-3 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580064. [PMID: 38405961 PMCID: PMC10888825 DOI: 10.1101/2024.02.13.580064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phospho-sites in NPM1 reside within signal sequences, this work highlights a key mechanism of NPM1 regulation by which NPM1 phosphorylation promotes 14-3-3 binding to control nucleocytoplasmic shuttling. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A. Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V. Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B. Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
3
|
Meng L, Wang B, Wang B, Feng Q, Zhang S, Xiong Z, Zhang S, Cai T, Ding CF, Yan Y. Post-synthesis of a titanium-rich magnetic COF nanocomposite with flexible branched polymers for efficient enrichment of phosphopeptides from human saliva and serum. Analyst 2023; 148:4738-4745. [PMID: 37646154 DOI: 10.1039/d3an00989k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A Ti4+-functionalized magnetic covalent organic framework material with flexible branched polymers (mCOF@ε-PL@THBA-Ti4+) built via an immobilized metal ion affinity chromatography (IMAC) enrichment strategy was proposed through post-synthesis modification. Hydrophilic ε-poly-L-lysine (ε-PL) rich in amino active groups was first introduced in the fabrication of the phosphopeptide enrichment material to increase the hydrophilicity while providing more functional modification pathways of the material. 2,3,4-Trihydroxy-benzaldehyde (THBA) provides abundant binding sites for the immobilization of numerous Ti4+, which is advantageous for the subsequent efficient phosphopeptide enrichment. The magnetic nanocomposite exhibited outstanding performance of phosphopeptide enrichment with good selectivity (1 : 5000), a low detection limit (2 fmol), and relatively high loading capacity (66.7 mg g-1). What's more, after treatment with mCOF@ε-PL@THBA-Ti4+, 16 endogenous phosphopeptides from fresh saliva of healthy people were recognized by MALDI-TOF MS, and 50 phosphopeptides belonging to 35 phosphoproteins from the serum of uremia patients were detected by nano-LC-MS/MS. Proteomics data analysis for the differential protein selection between uremia and normal controls was conducted using R software, and four down-regulated and three up-regulated proteins were obtained. The results suggested that the prepared material has potential applications in biomarker discovery.
Collapse
Affiliation(s)
- Luyan Meng
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
| | - Bing Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sijia Zhang
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Zi Xiong
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Shun Zhang
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Ting Cai
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Chuan-Fan Ding
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yinghua Yan
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
4
|
Xu S, Suttapitugsakul S, Tong M, Wu R. Systematic analysis of the impact of phosphorylation and O-GlcNAcylation on protein subcellular localization. Cell Rep 2023; 42:112796. [PMID: 37453062 PMCID: PMC10530397 DOI: 10.1016/j.celrep.2023.112796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
The subcellular localization of proteins is critical for their functions in eukaryotic cells and is tightly correlated with protein modifications. Here, we comprehensively investigate the nuclear-cytoplasmic distributions of the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins to dissect the correlation between protein distribution and modifications. Phosphorylated and O-GlcNAcylated proteins have overall higher nuclear distributions than non-modified ones. Different distributions among the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins are associated with protein size, structure, and function, as well as local environment and adjacent residues around modification sites. Moreover, we perform site-mutagenesis experiments using phosphomimetic and phospho-null mutants of two proteins to validate the proteomic results. Additionally, the effects of the OGT/OGA inhibition on glycoprotein distribution are systematically investigated, and the distribution changes of glycoproteins are related to their abundance changes under the inhibitions. Systematic investigation of the relationship between protein modification and localization advances our understanding of protein functions.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
5
|
Wang Z, Havasi A, Beeler AA, Borkan SC. Mechanisms of nucleophosmin (NPM)-mediated regulated cell death elucidated by Hsp70 during renal ischemia. Apoptosis 2022; 27:22-33. [PMID: 34762220 PMCID: PMC11857222 DOI: 10.1007/s10495-021-01696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 11/24/2022]
Abstract
Nucleophosmin (NPM), a nucleolar-based protein chaperone, promotes Bax-mediated mitochondrial injury and regulates cell death during acute kidney injury. However, the steps that transform NPM from an essential to a toxic protein during stress are unknown. To localize NPM-mediated events causing regulated cell death during ischemia, wild type (WT) and Hsp70 mutant proteins with characterized intracellular trafficking defects that restrict movement to either the nucleolar region (M45) or cytosol (985A) were expressed in primary murine proximal tubule epithelial cells (PTEC) harvested from Hsp70 null mice. After ischemia in vitro, PTEC survival was significantly improved and apoptosis reduced in rank order by selectively overexpressing WT > M45 > 985A Hsp70 proteins. Only Hsp70 with nuclear access (WT and M45) inhibited T95 NPM phosphorylation responsible for NPM translocation and also reduced cytosolic NPM accumulation. In contrast, WT or 985A > M45 significantly improved survival in Hsp70 null PTEC that expressed a cytosol-restricted NPM mutant, more effectively bound NPM, and also reduced NPM-Bax complex formation required for mitochondrial injury and cell death. Hsp70 knockout prevented the cytoprotective effect of suppressing NPM in ischemic PTEC and also increased cytosolic NPM accumulation after acute renal ischemia in vivo, emphasizing the inhibitory effect of Hsp70 on NPM-mediated toxicity. Distinct cytoprotective mechanisms by wild type and mutant Hsp70 proteins identify dual nuclear and cytosolic events that mediate NPM toxicity during stress-induced apoptosis and are rational targets for therapeutic AKI interventions. Antagonizing these early events in regulated cell death promotes renal cell survival during experimental AKI.
Collapse
Affiliation(s)
- Zhiyong Wang
- Section of Nephrology, Boston Medical Center, Boston University, Boston, MA, USA
| | - Andrea Havasi
- Section of Nephrology, Boston Medical Center, Boston University, Boston, MA, USA
| | - Aaron A Beeler
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Steven C Borkan
- Section of Nephrology, Boston Medical Center, Boston University, Boston, MA, USA.
- Evans Biomedical Research Center, Rm 546, 650 Albany St, Boston, MA, 02118-2518, USA.
| |
Collapse
|
6
|
Wang Z, Belghasem M, Salih E, Henderson J, Igwebuike C, Havasi A, Borkan SC. T95 nucleophosmin phosphorylation as a novel mediator and marker of regulated cell death in acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F552-F561. [PMID: 32686519 PMCID: PMC7509286 DOI: 10.1152/ajprenal.00230.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022] Open
Abstract
The function of site-specific phosphorylation of nucleophosmin (NPM), an essential Bax chaperone, in stress-induced cell death is unknown. We hypothesized that NPM threonine 95 (T95) phosphorylation both signals and promotes cell death. In resting cells, NPM exclusively resides in the nucleus and T95 is nonphosphorylated. In contrast, phosphorylated T95 NPM (pNPM T95) accumulates in the cytosol after metabolic stress, in multiple human cancer cell lines following γ-radiation, and in postischemic human kidney tissue. Based on the T95 phosphorylation consensus sequence, we hypothesized that glycogen synthase kinase-3β (GSK-3β) regulates cytosolic NPM translocation by phosphorylating T95 NPM. In a cell-free system, GSK-3β phosphorylated a synthetic NPM peptide containing T95. In vitro, bidirectional manipulation of GSK-3β activity substantially altered T95 phosphorylation, cytosolic NPM translocation, and cell survival during stress, mechanistically linking these lethal events. Furthermore, GSK-3β inhibition in vivo decreased cytosolic pNPM T95 accumulation in kidney tissue after experimental ischemia. In patients with acute kidney injury, both cytosolic NPM accumulation in proximal tubule cells and NPM-rich intratubular casts were detected in frozen renal biopsy tissue. These observations show, for the first time, that GSK-3β promotes cell death partly by phosphorylating NPM at T95, to promote cytosolic NPM accumulation. T95 NPM is also a rational therapeutic target to ameliorate ischemic renal cell injury and may be a universal injury marker in mammalian cells.
Collapse
Affiliation(s)
- Zhiyong Wang
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| | - Mostafa Belghasem
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Erdjan Salih
- Goldman School of Dentistry, Boston University, Boston, Massachusetts
| | - Joel Henderson
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Chinaemere Igwebuike
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| | - Andrea Havasi
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| | - Steven C Borkan
- Renal Section, Department of Medicine, Boston Medical Center, Boston University, Boston, Massachusetts
| |
Collapse
|
7
|
Yan JJ, Ryu JH, Piao H, Hwang JH, Han D, Lee SK, Jang JY, Lee J, Koo TY, Yang J. Granulocyte Colony-Stimulating Factor Attenuates Renal Ischemia-Reperfusion Injury by Inducing Myeloid-Derived Suppressor Cells. J Am Soc Nephrol 2020; 31:731-746. [PMID: 32132198 DOI: 10.1681/asn.2019060601] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (G-CSF) can increase populations of myeloid-derived suppressor cells, innate immune suppressors that play an immunoregulatory role in antitumor immunity. However, the roles of myeloid-derived suppressor cells and G-CSF in renal ischemia-reperfusion injury remain unclear. METHODS We used mouse models of ischemia-reperfusion injury to investigate whether G-CSF can attenuate renal injury by increasing infiltration of myeloid-derived suppressor cells into kidney tissue. RESULTS G-CSF treatment before ischemia-reperfusion injury subsequently attenuated acute renal dysfunction, tissue injury, and tubular apoptosis. Additionally, G-CSF treatment suppressed renal infiltration of macrophages and T cells as well as renal levels of IL-6, MCP-1, IL-12, TNF-α, and IFN-γ, but it increased levels of IL-10, arginase-1, and reactive oxygen species. Moreover, administering G-CSF after ischemia-reperfusion injury improved the recovery of renal function and attenuated renal fibrosis on day 28. G-CSF treatment increased renal infiltration of myeloid-derived suppressor cells (F4/80-CD11b+Gr-1int), especially the granulocytic myeloid-derived suppressor cell population (CD11b+Ly6GintLy6Clow); splenic F4/80-CD11b+Gr-1+ cells sorted from G-CSF-treated mice displayed higher levels of arginase-1, IL-10, and reactive oxygen species relative to those from control mice. Furthermore, these splenic cells effectively suppressed in vitro T cell activation mainly through arginase-1 and reactive oxygen species, and their adoptive transfer attenuated renal injury. Combined treatment with anti-Gr-1 and G-CSF showed better renoprotective effects than G-CSF alone, whereas preferential depletion of myeloid-derived suppressor cells by pep-G3 or gemcitabine abrogated the beneficial effects of G-CSF against renal injury. CONCLUSIONS G-CSF induced renal myeloid-derived suppressor cells, thereby attenuating acute renal injury and chronic renal fibrosis after ischemia-reperfusion injury. These results suggest therapeutic potential of myeloid-derived suppressor cells and G-CSF in renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joongyub Lee
- Department of Prevention and Management, Inha University Hospital School of Medicine, Inha University, Incheon, South Korea; and
| | - Tai Yeon Koo
- Biomedical Research Institute and.,Transplantation Center and
| | - Jaeseok Yang
- Biomedical Research Institute and .,Transplantation Center and.,Department of Surgery, Seoul National University Hospital, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Republic of, South Korea
| |
Collapse
|
8
|
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: Consequences of anchor loss. Int J Biochem Cell Biol 2019; 111:52-62. [PMID: 31009764 DOI: 10.1016/j.biocel.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Markéta Šašinková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| |
Collapse
|