1
|
He YJ, Liu PL, Wei T, Liu T, Li YF, Yang J, Fan WX. Artificial intelligence in kidney transplantation: a 30-year bibliometric analysis of research trends, innovations, and future directions. Ren Fail 2025; 47:2458754. [PMID: 39910843 PMCID: PMC11803763 DOI: 10.1080/0886022x.2025.2458754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
Kidney transplantation is the definitive treatment for end-stage renal disease (ESRD), yet challenges persist in optimizing donor-recipient matching, postoperative care, and immunosuppressive strategies. This study employs bibliometric analysis to evaluate 890 publications from 1993 to 2023, using tools such as CiteSpace and VOSviewer, to identify global trends, research hotspots, and future opportunities in applying artificial intelligence (AI) to kidney transplantation. Our analysis highlights the United States as the leading contributor to the field, with significant outputs from Mayo Clinic and leading authors like Cheungpasitporn W. Key research themes include AI-driven advancements in donor matching, deep learning for post-transplant monitoring, and machine learning algorithms for personalized immunosuppressive therapies. The findings underscore a rapid expansion in AI applications since 2017, with emerging trends in personalized medicine, multimodal data fusion, and telehealth. This bibliometric review provides a comprehensive resource for researchers and clinicians, offering insights into the evolution of AI in kidney transplantation and guiding future studies toward transformative applications in transplantation science.
Collapse
Affiliation(s)
- Ying Jia He
- Department of Nephrology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Pin Lin Liu
- Department of Nephrology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tao Wei
- Department of Library, Kunming Medical University, Kunming, Yunnan Province, China
| | - Tao Liu
- Organ Transplantation Center, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yi Fei Li
- Organ Transplantation Center, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jing Yang
- Department of Nephrology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wen Xing Fan
- Department of Nephrology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Buscher K, Rixen R, Schütz P, Van Marck V, Heitplatz B, Gabriels G, Jehn U, Braun DA, Pavenstädt H, Reuter S. Unveiling systemic responses in kidney transplantation: interplay between the allograft transcriptome and serum proteins. Front Immunol 2024; 15:1398000. [PMID: 39081308 PMCID: PMC11286594 DOI: 10.3389/fimmu.2024.1398000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Immunity, as defined by systems biology, encompasses a holistic response throughout the body, characterized by intricate connections with various tissues and compartments. However, this concept has been rarely explored in kidney transplantation. In this proof-of-concept study, we investigated a direct association between the allograft phenotype and serum protein signatures. Time-matched samples of graft biopsies and blood serum were collected in a heterogeneous cohort of kidney-transplanted patients (n = 15) for bulk RNA sequencing and proteomics, respectively. RNA transcripts exhibit distinct and reproducible, coregulated gene networks with specific functional profiles. We measured 159 serum proteins and investigated correlations with gene expression networks. Two opposing axes-one related to metabolism and the other to inflammation-were identified. They may represent a biological continuum between the allograft and the serum and correlate with allograft function, but not with interstitial fibrosis or proteinuria. For signature validation, we used two independent proteomic data sets (n = 21). Our findings establish a biological link between the allograft transcriptome and the blood serum proteome, highlighting systemic immune effects in kidney transplantation and offering a promising framework for developing allograft-linked biomarkers.
Collapse
Affiliation(s)
- Konrad Buscher
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Rebecca Rixen
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Paula Schütz
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Veerle Van Marck
- Institute of Pathology, University Hospital of Münster, Münster, Germany
| | - Barbara Heitplatz
- Institute of Pathology, University Hospital of Münster, Münster, Germany
| | - Gert Gabriels
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Ulrich Jehn
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Daniela Anne Braun
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Hermann Pavenstädt
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| | - Stefan Reuter
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
3
|
Mizuno H, Murakami N. Multi-omics Approach in Kidney Transplant: Lessons Learned from COVID-19 Pandemic. CURRENT TRANSPLANTATION REPORTS 2023; 10:173-187. [PMID: 38152593 PMCID: PMC10751044 DOI: 10.1007/s40472-023-00410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 12/29/2023]
Abstract
Purpose of Review Multi-omics approach has advanced our knowledge on transplantation-associated clinical outcomes, such as acute rejection and infection, and emerging omics data are becoming available in kidney transplant and COVID-19. Herein, we discuss updated findings of multi-omics data on kidney transplant outcomes, as well as COVID-19 and kidney transplant. Recent Findings Transcriptomics, proteomics, and metabolomics revealed various inflammation pathways associated with kidney transplantation-related outcomes and COVID-19. Although multi-omics data on kidney transplant and COVID-19 is limited, activation of innate immune pathways and suppression of adaptive immune pathways were observed in the active phase of COVID-19 in kidney transplant recipients. Summary Multi-omics analysis has led us to a deeper exploration and a more comprehensive understanding of key biological pathways in complex clinical settings, such as kidney transplantation and COVID-19. Future multi-omics analysis leveraging multi-center biobank collaborative will further advance our knowledge on the precise immunological responses to allograft and emerging pathogens.
Collapse
Affiliation(s)
- Hiroki Mizuno
- Transplant Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 305, Boston, MA 02115, USA
- Dvision of Nephrology and Rheumatology, Toranomon Hospital, Tokyo, Japan
| | - Naoka Murakami
- Transplant Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 305, Boston, MA 02115, USA
| |
Collapse
|
4
|
Callemeyn J, Lamarthée B, Koenig A, Koshy P, Thaunat O, Naesens M. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int 2021; 101:692-710. [PMID: 34915041 DOI: 10.1016/j.kint.2021.11.029] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Detection of mismatched human leukocyte antigens by adaptive immune cells is considered as the main cause of transplant rejection, leading to either T-cell mediated rejection or antibody-mediated rejection. This canonical view guided the successful development of immunosuppressive therapies and shaped the diagnostic Banff classification for kidney transplant rejection that is used in clinics worldwide. However, several observations have recently emerged that question this dichotomization between T-cell mediated rejection and antibody-mediated rejection, related to heterogeneity in the serology, histology, and prognosis of the rejection phenotypes. In parallel, novel insights were obtained concerning the dynamics of donor-specific anti-human leukocyte antigen antibodies, the immunogenicity of donor-recipient non-human leukocyte antigen mismatches, and the autoreactivity against self-antigens. Moreover, the potential of innate allorecognition was uncovered, as exemplified by natural killer cell-mediated microvascular inflammation through missing self, and by the emerging evidence on monocyte-driven allorecognition. In this review, we highlight the gaps in the current classification of rejection, provide an overview of the expanding insights into the mechanisms of allorecognition, and critically appraise how these could improve our understanding and clinical approach to kidney transplant rejection. We argue that consideration of the complex interplay of various allorecognition mechanisms can foster a more integrated view of kidney transplant rejection and can lead to improved risk stratification, targeted therapies, and better outcome after kidney transplantation.
Collapse
Affiliation(s)
- Jasper Callemeyn
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Necker-Enfants Malades Institute, French National Institute of Health and Medical Research (INSERM) Unit 1151, Paris, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Priyanka Koshy
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Malone AF. Transplant Biopsy Assessment in 21st Century. J Am Soc Nephrol 2021; 32:1827-1828. [PMID: 34281960 PMCID: PMC8455280 DOI: 10.1681/asn.2021060804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Andrew F Malone
- Division of Nephrology, Department of Medicine, Washington University at St. Louis, St. Louis, Missouri
| |
Collapse
|