1
|
Lu XN, Chen J, Han G, Ding C, Li C, Xu C, Cui Y, Ju S, Tong X, Zhao J. FOXM1 Promotes Non-Small Cell Lung Cancer Progression by Increasing CHEK1 Expression. Curr Med Sci 2025:10.1007/s11596-025-00055-x. [PMID: 40434671 DOI: 10.1007/s11596-025-00055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/29/2025]
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) is a leading cause of cancer-associated mortality. This study aimed to investigate the role of checkpoint kinase 1 (CHEK1) in NSCLC progression and its regulatory relationship with forkhead box protein M1 (FOXM1). METHODS Transwell assays were used to evaluate the migration and invasion capabilities of NSCLC cells with either CHEK1 overexpression or knockdown. The expression of epithelial-mesenchymal transition (EMT) markers in NSCLC cells under CHEK1 overexpression or knockdown conditions was analyzed via Western blotting. Proliferative capacity was assessed using CCK-8 assays in NSCLC cells with modulated CHEK1 expression. Additionally, real-time quantitative PCR was employed to measure CHEK1 and FOXM1 expression levels in NSCLC tissues. The effects of CHEK1 knockdown on tumor growth were further validated in animal models. The binding of FOXM1 to the CHEK1 promoter region was examined using dual-luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays. RESULTS FOXM1 and CHEK1 were upregulated in NSCLC tissues. CHEK1 overexpression promoted NSCLC cell proliferation, while its knockdown suppressed proliferation, inhibited EMT, and reduced tumor growth in vivo. FOXM1 was shown to directly bind to CHEK1 promoter, thereby upregulating CHEK1 expression. CONCLUSION CHEK1 promotes NSCLC cell proliferation and tumor growth, and its expression is regulated by FOXM1. These findings suggest CHEK1 and FOXM1 are potential therapeutic targets for NSCLC treatment.
Collapse
Affiliation(s)
- Xiao-Ning Lu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Thoracic Surgery, Suqian First People's Hospital, Suqian, 223800, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Guang Han
- Department of Respiratory Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yuan Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Sheng Ju
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xin Tong
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
2
|
Song CH, Lin CW, Han KH. Cell cycle-based antibody selection for suppressing cancer cell growth. FASEB J 2025; 39:e70402. [PMID: 39953793 DOI: 10.1096/fj.202401586rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Cell cycle arrest and programmed cell death are crucial biological processes in cancer development. Regulating cell fate decisions is essential due to their potential to induce cell cycle arrest and cell death. Inducing cell cycle regulatory proteins in tumor cells is considered a key objective in cancer therapy. Here, we present a novel method that selects antibodies from an antibody library to inhibit cancer growth using fluorescence-activated cell sorting (FACS) assays and cell cycle analysis. This approach seeks antibodies that induce cancer cells to enter the G0 or G1 phase, a quiescent state where cells cease to proliferate and trigger programmed cell death. We found that the T1 antibody effectively suppresses the proliferation of cancer cells. Mechanistically, serine protease 3 (PRSS3) is a target antigen of the T1 antibody. We demonstrated that PRSS3 controls tumor cell proliferation and apoptosis through interaction with the T1 antibody. This research suggests that PRSS3 holds great potential as a target for solid cancer treatment. This cycle-based approach to antibody screening shows potential because it can be broadly applied to cancer and other challenging diseases.
Collapse
Affiliation(s)
- Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, Korea
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, Korea
| |
Collapse
|
3
|
Kim JH, Lee EJ, Han KH. An Antagonist Antibody That Inhibits Cancer Cell Growth In Vitro through RACK1. Pharmaceuticals (Basel) 2024; 17:1303. [PMID: 39458945 PMCID: PMC11510629 DOI: 10.3390/ph17101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Our research introduces a novel screening method to identify antibodies that can suppress cell proliferation and induce apoptosis. METHODS By using an autocrine signaling system with lentivirus, we developed an antibody screening method based on FACS sorting assays and cell cycle analysis to inhibit tumor growth in vitro. This approach is particularly well suited for studying tumor suppressors. Inducing the G0 phase in tumor cells with specific antibodies may arrest their growth permanently or trigger apoptosis. The cell cycle is composed of tightly regulated phases for cell growth and division, with tumorigenesis or apoptosis occurring when these regulatory mechanisms fail. RESULTS In our study, we identified RACK1 as a key regulator of cancer cell growth. The H9 antibody against RACK1 selected from a human antibody library effectively suppressed cell proliferation by inhibiting RACK1 function. CONCLUSIONS These findings suggest that RACK1 plays a crucial role in tumor cell cycling and could represent a novel therapeutic target for cancer treatment. Although RACK1 is recognized as a significant target protein in various tumors, no commercial therapeutic agents currently exist. Our results suggest that the H9 antibody could be a promising candidate for the development of novel cancer therapies.
Collapse
Affiliation(s)
| | | | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea
| |
Collapse
|
4
|
Zhang TY, Kong L, Hao JX, Wang H, Yan ZH, Sun XF, Shen W. Effects of Ochratoxin A exposure on DNA damage in porcine granulosa cells in vitro. Toxicol Lett 2020; 330:167-175. [PMID: 32454083 DOI: 10.1016/j.toxlet.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/19/2023]
Abstract
Ochratoxin A (OTA), a feed mycotoxin, tends to impair the reproductive performance of animals. Our previous studies have demonstrated that OTA exposure inhibits porcine ovarian granulosa cell (GC) proliferation and induces their apoptosis, but the underlying toxic mechanism is still uncertain. In this study, we explored the OTA exposure on porcine GCs in vitro and found that OTA exposure inhibited the proliferation of porcine GCs and arrested cell cycle of GCs in the G2/M phase. The results based on RNA-Seq revealed that 20 μM and 40 μM OTA exposure increase DNA damage of porcine GCs in vitro. The differentially expressed genes (DEGs) of 40 μM OTA exposure were enriched in the pathways of mismatch repair, nucleotide excision repair and homologous recombination in DNA replication compared with control group and 20 μM OTA exposure group. Meanwhile, OTA exposure increased the expression levels of DNA double-strand breaks (DSBs) gene γ-H2AX, and DNA repair related genes, such as BRCA1, XRCC1, PARP1, and RAD51. Above all, our research revealed that OTA might exert deleterious effects on porcine ovarian GCs, influencing DNA repair-related biological processes and causing DNA damage response.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; School of Public Health, Qingdao University, Qingdao 266034, China
| | - Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Xing Hao
- Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Han Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Lee KW, Chung KS, Lee JH, Choi JH, Choi SY, Kim S, Lee JY, Lee KT. Resveratrol analog, N-(4-methoxyphenyl)-3,5-dimethoxybenzamide induces G 2/M phase cell cycle arrest and apoptosis in HeLa human cervical cancer cells. Food Chem Toxicol 2018; 124:101-111. [PMID: 30508562 DOI: 10.1016/j.fct.2018.11.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
In this study, several resveratrol analogs were synthesized and evaluated in search of a more effective anti-proliferative resveratrol analog. Among the evaluated resveratrol analogs, we have identified N-(4-methoxyphenyl)-3,5-dimethoxybenamide (MPDB) as a potent anti-proliferative compound. Treatment with MPDB resulted in G2/M phase cell cycle arrest, which was accompanied by alteration of G2/M-related protein expression and phosphorylation. MPDB-induced G2/M arrest was blocked by transfection of ATM/ATR siRNAs, indicating the critical role of ATM/ATR in G2/M phase arrest. In addition, treatment with MPDB displayed the activation of caspase and decreased Bcl-xl protein expression after 20 h in HeLa cells. Moreover, MPDB increased cytosolic cytochrome c release and Fas and Fas-L protein expression, indicating intrinsic and extrinsic apoptosis pathway, respectively. These results suggest that MPDB is a new and potent compound that induces ATM/ATR-dependent G2/M phase cell cycle arrest and apoptosis, implicating it as a putative candidate in the investment of cervical cancer therapy.
Collapse
Affiliation(s)
- Kyung-Won Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Sang Yoon Choi
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju, 55365, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul, 08826, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Mirghani H, Amen F, Tao Y, Deutsch E, Levy A. Increased radiosensitivity of HPV-positive head and neck cancers: Molecular basis and therapeutic perspectives. Cancer Treat Rev 2015; 41:844-52. [PMID: 26476574 DOI: 10.1016/j.ctrv.2015.10.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/22/2015] [Accepted: 10/04/2015] [Indexed: 12/27/2022]
Abstract
Human papillomavirus driven head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), are characterized by a significant survival advantage over their HPV-negative counterparts. Although the reasons behind this are still not fully elucidated, it is widely accepted that these tumors have a higher response to ionizing radiation that might explain their favorable outcomes. Potential underlying intrinsic mechanisms include impaired DNA repair abilities, differences in activated repopulation-signaling pathways and cell cycle control mechanisms. The role of the microenvironment is increasingly highlighted, particularly tumor oxygenation and the immune response. Recent studies have shown a distinct pattern of intratumoral immune cell infiltrates, according to HPV status, and have suggested that an increased cytotoxic T-cell based antitumor immune response is involved in improved prognosis of patients with HPV-positive OPSCC. These significant milestones, in the understanding of HPV-induced HNSCC, pave the way to new therapeutic opportunities. This article reviews the current evidence on the biological basis of increased radiosensitivity in HPV-positive HNSCC and discusses potential therapeutic implications.
Collapse
Affiliation(s)
- Haïtham Mirghani
- Department of Otolaryngology - Head and Neck Surgery, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France.
| | - Furrat Amen
- Department of Otolaryngology, Peterborough City Hospital and Addenbrooke's Hospital, Cambridge, UK
| | - Yungan Tao
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France; Université Paris Sud, Faculté de Médecine, Kremlin Bicêtre 94270, France; INSERM U1030 Molecular Radiotherapy, Cancer Research Institute, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France; Université Paris Sud, Faculté de Médecine, Kremlin Bicêtre 94270, France; INSERM U1030 Molecular Radiotherapy, Cancer Research Institute, Villejuif, France
| |
Collapse
|
7
|
Liu J, Wu S, Shen H, Cui J, Wang Y, Xing L, Wang J, Yan X, Zhang X. Ochratoxin A induces DNA damage and G2 phase arrest in human esophageal epithelium Het-1A cells in vitro . J Toxicol Sci 2015; 40:657-65. [PMID: 26354382 DOI: 10.2131/jts.40.657] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jing Liu
- Department of Pathology, General Hospital of Chinese People’s Armed Police Force, China
- Laboratory of Pathology, Hebei Medical University, China
| | - Sha Wu
- Laboratory of Pathology, Hebei Medical University, China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, China
| | - Yuan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, China
| | - Lingxiao Xing
- Laboratory of Pathology, Hebei Medical University, China
| | - Junling Wang
- Laboratory of Pathology, Hebei Medical University, China
| | - Xia Yan
- Laboratory of Pathology, Hebei Medical University, China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, China
- Department of Pathology, The Second Hospital, Hebei Medical University, China
| |
Collapse
|
8
|
Abstract
Protein phosphorylation is a fundamental post-translational modification. It regulates a large number of critical cellular processes (differentiation, division, proliferation, apoptosis). Cell division is a process including a series of phases by which a parent cell divides into two daughter cells. The cells enter these stages then progress within the cell division under an accurate control by many proteins. These proteins are activated by phosphorylation. Cyclin-dependent kinases are responsible for this phosphorylation and therefore represent potential therapeutic targets especially in oncology.
Collapse
|