1
|
Adkins CE, Nounou MI, Hye T, Mohammad AS, Terrell-Hall T, Mohan NK, Eldon MA, Hoch U, Lockman PR. NKTR-102 Efficacy versus irinotecan in a mouse model of brain metastases of breast cancer. BMC Cancer 2015; 15:685. [PMID: 26463521 PMCID: PMC4604629 DOI: 10.1186/s12885-015-1672-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023] Open
Abstract
Background Brain metastases are an increasing problem in women with invasive breast cancer. Strategies designed to treat brain metastases of breast cancer, particularly chemotherapeutics such as irinotecan, demonstrate limited efficacy. Conventional irinotecan distributes poorly to brain metastases; therefore, NKTR-102, a PEGylated irinotecan conjugate should enhance irinotecan and its active metabolite SN38 exposure in brain metastases leading to brain tumor cytotoxicity. Methods Female nude mice were intracranially or intracardially implanted with human brain seeking breast cancer cells (MDA-MB-231Br) and dosed with irinotecan or NKTR-102 to determine plasma and tumor pharmacokinetics of irinotecan and SN38. Tumor burden and survival were evaluated in mice treated with vehicle, irinotecan (50 mg/kg), or NKTR-102 low and high doses (10 mg/kg, 50 mg/kg respectively). Results NKTR-102 penetrates the blood-tumor barrier and distributes to brain metastases. NKTR-102 increased and prolonged SN38 exposure (>20 ng/g for 168 h) versus conventional irinotecan (>1 ng/g for 4 h). Treatment with NKTR-102 extended survival time (from 35 days to 74 days) and increased overall survival for NKTR-102 low dose (30 % mice) and NKTR-102 high dose (50 % mice). Tumor burden decreased (37 % with 10 mg/kg NKTR-102 and 96 % with 50 mg/kg) and lesion sizes decreased (33 % with 10 mg/kg NKTR-102 and 83 % with 50 mg/kg NKTR-102) compared to conventional irinotecan treated animals. Conclusions Elevated and prolonged tumor SN38 exposure after NKTR-102 administration appears responsible for increased survival in this model of breast cancer brain metastasis. Further, SN38 concentrations observed in this study are clinically achieved with 145 mg/m2 NKTR-102, such as those used in the BEACON trial, underlining translational relevance of these results. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1672-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chris E Adkins
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Mohamed I Nounou
- School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Faculty of Pharmacy, Department of Pharmaceutics, Alexandria University, Alexandria, Egypt.
| | - Tanvirul Hye
- School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Afroz S Mohammad
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Tori Terrell-Hall
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Neel K Mohan
- Nektar Therapeutics, San Francisco, CA, 94158, USA.
| | | | - Ute Hoch
- Nektar Therapeutics, San Francisco, CA, 94158, USA.
| | - Paul R Lockman
- Department of Basic Pharmaceutical Sciences, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-905, USA. .,School of Pharmacy, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|