1
|
Milinčić DD, Sredović Ignjatović I, Stojković D, Petrović J, Kostić AŽ, Glamočlija J, Petković AD, Plećić A, Lević S, Rac V, Pavlović VB, Stanojević SP, Nedović VA, Pešić MB. Goat's Skim Milk Enriched with Agrocybe aegerita (V. Brig.) Vizzini Mushroom Extract: Optimization, Physico-Chemical Characterization, and Evaluation of Techno-Functional, Biological and Antimicrobial Properties. Foods 2025; 14:1056. [PMID: 40232061 PMCID: PMC11942284 DOI: 10.3390/foods14061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
The aim of this study was to develop a novel functional ingredient-goat's skim milk enriched with Agrocybe aegerita (V. Brig.) Vizzini mushroom extract (ME/M)-using Central Composite Design (CCD). The optimized ME/M ingredient was evaluated for its physico-chemical, techno-functional, biological, and antimicrobial properties. Physico-chemical properties were analyzed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS). The ingredient exhibited a polymodal particle size distribution and contained glucans, along with a newly formed polypeptide resulting from the selective cleavage of goat milk proteins. A 0.1% ME/M solution demonstrated good emulsifying and foaming properties. Additionally, ME/M showed strong antiproliferative effects on human cancer cell lines, particularly Caco-2 (colorectal) and MCF7 (breast) cancer cells. The ingredient also promoted HaCaT cell growth without cytotoxic effects, suggesting its safety and potential wound-healing properties. Furthermore, the addition of ME/M to HaCaT cells inoculated with Staphylococcus aureus resulted in reduced IL-6 levels compared to the control (without ME/M), indicating a dose-dependent anti-inflammatory effect. The optimized ME/M ingredient also exhibited antibacterial, antifungal, anticandidal, and antibiofilm activity in one-fourth of MIC. These findings suggest that the formulated ME/M ingredient has strong potential for use in the development of functional foods offering both desirable techno-functional properties and bioactive benefits.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Ivana Sredović Ignjatović
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Dejan Stojković
- Institute for Biological Research, “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (D.S.); (J.P.); (J.G.)
| | - Jovana Petrović
- Institute for Biological Research, “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (D.S.); (J.P.); (J.G.)
| | - Aleksandar Ž. Kostić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Jasmina Glamočlija
- Institute for Biological Research, “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (D.S.); (J.P.); (J.G.)
| | - Ana Doroški Petković
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Ana Plećić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Steva Lević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Vladislav Rac
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Vladimir B. Pavlović
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Slađana P. Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Viktor A. Nedović
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| | - Mirjana B. Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (I.S.I.); (A.Ž.K.); (A.D.P.); (A.P.); (S.L.); (V.R.); (V.B.P.); (S.P.S.); (V.A.N.)
| |
Collapse
|
2
|
Milinčić DD, Kostić AŽ, Lević S, Gašić UM, Božić DD, Suručić R, Ilić TD, Nedović VA, Vidović BB, Pešić MB. Goat's Milk Powder Enriched with Red ( Lycium barbarum L.) and Black ( Lycium ruthenicum Murray) Goji Berry Extracts: Chemical Characterization, Antioxidant Properties, and Prebiotic Activity. Foods 2024; 14:62. [PMID: 39796352 PMCID: PMC11719583 DOI: 10.3390/foods14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The current trend in food innovations includes developing products containing plant ingredients or extracts rich in bioactive compounds. This study aimed to prepare and characterize skimmed thermally treated goat's milk powders enriched with lyophilized fruit extracts of Lycium ruthenicum Murray (GMLR) and Lycium barbarum L. (GMLB). Proximate analysis, ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), Fourier transform infrared spectroscopy using attenuated total reflection (FTIR-ATR), and electrophoretic analysis were assessed. Total phenolic content (TPC), total protein content, and antioxidant properties of enriched goat milk powders were determined spectrophotometrically, and prebiotic potential was evaluated by the broth microdilution method. A total of 25 phenolic compounds and 18 phenylamides were detected in the enriched goat milk powders. Electrophoretic analysis showed the absence of proteolysis in the prepared powders. The GMLR showed the highest TPC and displayed a ferric ion-reducing power, probably contributed by anthocyanins and some phenylamides. GMLR and GMLB had higher ABTS radical scavenging activity but lower ferrous ion-chelating capacity than control goat's milk powder. GMLB and GMLR in a dose-dependent manner (0.3-5 mg/mL) showed a growth-promoting effect on probiotic strains. In summary, prepared goji/goat milk powders, primarily GMLR, might be used as prebiotic supplements or functional food additives.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| | - Aleksandar Ž. Kostić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| | - Steva Lević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| | - Uroš M. Gašić
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković-National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Dragana D. Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Relja Suručić
- Department of Pharmacognosy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Tijana D. Ilić
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Viktor A. Nedović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| | - Bojana B. Vidović
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Mirjana B. Pešić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (V.A.N.)
| |
Collapse
|
3
|
Balbino S, Cvitković D, Skendrović H, Dragović-Uzelac V. Optimisation of Almond-Based Dairy-Free Milk Alternative Formulation Fortified with Myrtle, Bay Leaf and Fennel Extracts §. Food Technol Biotechnol 2023; 61:378-388. [PMID: 38022885 PMCID: PMC10666954 DOI: 10.17113/ftb.61.03.23.8002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Research background Herbs and spices used in traditional medicine are nowadays increasingly used in combinations to create functional food formulations aimed at treating specific symptoms and disorders. Among herbs originating from the Mediterranean region, extracts of myrtle (Myrtus communis L.), bay leaf (Laurel nobilis L.) and fennel (Foeniculum vulgare Mill.) are traditionally used for gastrointestinal disorders. When considering how to incorporate these extracts into products, dairy-free milk alternatives provide an excellent base with almond-based drinks being among the most popular within this group. Experimental approach The aim of this study is therefore to optimise the formulation of an almond drink fortified with a 25 % (on dry mass basis) aqueous herbal extract containing myrtle, bay leaf (25 % each) and fennel seed (50 %) extracts. A central composite design with 20 formulations varied the content of φ(aqueous herbal extract)=2-6 %, lecithin as emulsifier 0.15-0.45 and xylitol as sweetener 2-5 % (m/V), while antioxidant activity, total phenolic content and sensory properties were determined as dependent variables. Results and conclusions The antioxidant activity and total phenolic content of the prepared almond drink formulations increased with the amount of added concentrated aqueous herbal extracts, as did the colour, herbal odour and flavour, bitterness and aftertaste. The addition of lecithin resulted in a darker colour and the sweetness was increased by the xylitol content. All formulations had good overall attractiveness, which increased with higher xylitol content. Novelty and scientific contribution The current work offers new insights into the optimisation of fortified dairy-free alternatives. The addition of myrtle, bay leaf and fennel seed extracts to almond drink-based formulations resulted in a 12-fold increase in antioxidant activity. Xylitol masks the potential bitterness of the phenolic compounds so that higher amounts of extracts can be added.
Collapse
Affiliation(s)
- Sandra Balbino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Daniela Cvitković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Hanna Skendrović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Cedeño-Pinos C, Jiménez-Monreal AM, Quílez M, Bañón S. Polyphenol Extracts from Sage ( Salvia lavandulifolia Vahl) By-Products as Natural Antioxidants for Pasteurised Chilled Yoghurt Sauce. Antioxidants (Basel) 2023; 12:364. [PMID: 36829923 PMCID: PMC9952586 DOI: 10.3390/antiox12020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Sage by-product extracts (SE) are a valuable source of phenolic acids and flavonoids for food applications. The objective was to test two SE as antioxidants in pasteurised chilled yoghurt sauces against oxidation. Two SE of different polyphenol total content and profile were selected: SE38 (37.6 mg/g) and SE70 (69.8 mg/g), with salvianic and rosmarinic acid as the main polyphenols, respectively. Four experimental low-fat yoghurt sauces were formulated: untreated; SE70/2 (0.16 g/kg); SE38 (0.3 g/kg); and SE70 (0.3 g/kg). The stability of phenolic acids, microbiological quality (mesophilic bacteria, moulds and yeasts, and L. monocytogenes), and oxidative stability (lipids, colour, and pH) were studied in the sauces after pasteurisation at 70 °C for 30 min (day 0) and stored by refrigeration (day 42). Pasteurisation and further chilling ensured the microbiological quality and inhibition of microbial growth could not be evidenced, although SE70 showed some antimicrobial potential. Both SE showed good properties as antioxidants for yoghurt sauces. This finding was based on two results: (i) their main polyphenols, salvianic and rosmarinic acids, resisted to mild pasteurisation and remained quite stable during shelf life; and (ii) SE improved radical scavenging capacity, delayed primary and secondary lipid oxidation, and increased colour stability, contributing to sauce stabilisation. SE38 had a better antioxidant profile than SE70; therefore, the selection criteria for SE should be based on both quantity and type of polyphenols. Due to their stability and antioxidant properties, sage polyphenols can be used as natural antioxidants for clean-label yoghurt sauces.
Collapse
Affiliation(s)
- Cristina Cedeño-Pinos
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Antonia María Jiménez-Monreal
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
- CIBER: CB12/03/30038 Pathophysiology of Obesity and Nutrition, CIBERobn, Carlos III Health Institute (ISCIII), 28013 Madrid, Spain
| | - María Quílez
- Research Group on Rainfed Crops for the Rural Development, Murcia Institute of Agri-Food Research and Development (IMIDA), 30150 Murcia, Spain
| | - Sancho Bañón
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
5
|
Minić DAP, Milinčić DD, Kolašinac S, Rac V, Petrović J, Soković M, Banjac N, Lađarević J, Vidović BB, Kostić AŽ, Pavlović VB, Pešić MB. Goat milk proteins enriched with Agaricus blazei Murrill ss. Heinem extracts: Electrophoretic, FTIR, DLS and microstructure characterization. Food Chem 2023; 402:134299. [DOI: 10.1016/j.foodchem.2022.134299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
|
6
|
Revalorisation of Sage ( Salvia lavandulifolia Vahl) By-Product Extracts as a Source of Polyphenol Antioxidants for Novel Jelly Candies. Antioxidants (Basel) 2023; 12:antiox12010159. [PMID: 36671021 PMCID: PMC9854814 DOI: 10.3390/antiox12010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Sage (Salvia lavandulifolia Vahl) aqueous extracts (SE) obtained from distillation by-products were assessed as antioxidants for nutritionally enhanced jelly candies. Two experimental SEs with a different content of phenolic acids and flavonoids were tested: (i) SE38 (37.6 mg/g) and (ii) SE70 (69.8 mg/g), with salvianic and rosmarinic acids as main polyphenols, respectively. Flavour alteration, stability of sage polyphenols, physical quality traits and antioxidant capacity (AC) were studied in strawberry candies formulated without sugars and enriched with SEs at 0.25, 0.50 and 0.75 g/kg. Despite their different quantitative composition, SE38 and SE70 provided similar antioxidant properties, which were dose dependent. Salvianic and rosmarinic acids were stable without degrading to candy processing (up to 80 °C), keeping their antioxidant potential. There were no relevant differences in flavour or physical traits (pH, °Brix and CIELab colour) between untreated and SE-enriched strawberry candies. The addition of 0.75 g SE/kg resulted in relevant increases of candy AC: (i) from 30 to 38 mg GAE/100 g (total phenolics); (ii) from 10 to 17 mg TE/100 g (DPPH• radical scavenging assay); (iii) from 5 to 13 mg TE/100 g (ABTS·+ radical scavenging assay); (iv) from 84 to 163 µmol Fe2+/100 g (FRAP capacity) and (v) from to 75 to 83% (inhibition of deoxyribose damage). Sage distillation by-products can be revalorised as a source of natural antioxidants to produce healthier candies.
Collapse
|
7
|
Effects of Ultrasound versus Pasteurization on Whey–Oat Beverage Processing: Quality and Antioxidative Properties. Processes (Basel) 2022. [DOI: 10.3390/pr10081572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The consumption of functional beverages is rapidly increasing. The improvement in the functional properties of whey after the application of ultrasound is due to the release of bioactive peptides that have antioxidant properties, among others. Bioactive peptides with antioxidant activity have also been found in oats, stimulating the study of whey beverages formulated with oats to obtain functional products. The aim of this study was to determine the influence of ultrasound (24 kHz) at 20 °C for 15 min at 23 W and 154 W on the quality and functional properties of whey–oat (50:50 v/v) beverages and compare it with pasteurization at 65 °C for 30 min (LTLT). Non-significant effect (p > 0.05) of ultrasound intensity (23 W and 154 W) was observed on the physicochemical characteristics and the proximal composition of the whey–oat beverages. The sonicated beverages showed a greater tendency to green and yellow color (p < 0.05), higher fat content (p < 0.05), and less ash and carbohydrates (p < 0.05) than the pasteurized beverage. The antioxidant activity of the mM Trolox equivalent/mL of the sonicated beverages was higher (p < 0.05) (4.24 and 4.27 for 23 W and 54 W, respectively) compared to that of the pasteurized beverage (4.12). It is concluded that ultrasound is superior to pasteurization in improving the antioxidant activity of whey–oat beverages without having a detrimental impact on the proximal composition and physicochemical quality. Future studies should evaluate more functional parameters and determine the shelf life of sonicated whey–oat beverages.
Collapse
|
8
|
CARVALHO CCD, BODINI RB, SOBRAL PJDA, OLIVEIRA ALD. Ice creams made from cow’s and goat’s milks with different fat concentrations: physical-chemical and sensory properties. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.79721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Sik B, Székelyhidi R, Lakatos E, Kapcsándi V, Ajtony Z. Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: an overview. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractFortification of foods with phenolic compounds is becoming increasingly popular due to their beneficial physiological effects. The biological activities reported include antioxidant, anticancer, antidiabetic, anti-inflammatory, or neuroprotective effects. However, the analysis of polyphenols in functional food matrices is a difficult task because of the complexity of the matrix. The main challenge is that polyphenols can interact with other food components, such as carbohydrates, proteins, or lipids. The chemical reactions that occur during the baking technologies in the bakery and biscuit industry may also affect the results of measurements. The analysis of polyphenols found in fortified foods can be done by several techniques, such as liquid chromatography (HPLC and UPLC), gas chromatography (GC), or spectrophotometry (TPC, DPPH, FRAP assay etc.). This paper aims to review the available information on analytical methods to fortified foodstuffs while as presenting the advantages and limitations of each technique.
Collapse
|
10
|
Milinčić DD, Kostić AŽ, Gašić UM, Lević S, Stanojević SP, Barać MB, Tešić ŽL, Nedović V, Pešić MB. Skimmed Goat's Milk Powder Enriched with Grape Pomace Seed Extract: Phenolics and Protein Characterization and Antioxidant Properties. Biomolecules 2021; 11:biom11070965. [PMID: 34208895 PMCID: PMC8301875 DOI: 10.3390/biom11070965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was phenolics and protein characterization and antioxidant properties evaluation of skimmed thermally treated goat's milk powder enriched with different concentration of grape pomace seed extract (SE). The dominant phenolics in SE were phenolic acids, flavan-3-ols and procyanidins. Different electrophoretic techniques together with UHPLC-MS/MS analysis revealed the presence of phenolics-protein interactions in the samples, mainly procyanidins with whey protein/caseins complexes. Addition of SE into thermally treated goat's milk significantly improved antioxidant properties of goat's milk such as TAC, FRP, DPPH• and ABTS•+ scavenging activity. Gallic acid, catechin, and procyanidins mostly contributed to these activities. The schematic representation of phenolics-casein micelles interactions in thermally treated goat's milk enriched with SE was given. The addition of SE into thermally treated goat's milk can be a promising strategy in food waste recovery and to enhance the beneficial health effects of goat's milk-based functional foods.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Aleksandar Ž. Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Uroš M. Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Steva Lević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Slađana P. Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Miroljub B. Barać
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Živoslav Lj. Tešić
- Chair of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia;
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Mirjana B. Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
- Correspondence:
| |
Collapse
|
11
|
Carrillo-Lopez LM, Garcia-Galicia IA, Tirado-Gallegos JM, Sanchez-Vega R, Huerta-Jimenez M, Ashokkumar M, Alarcon-Rojo AD. Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. ULTRASONICS SONOCHEMISTRY 2021; 73:105467. [PMID: 33508590 PMCID: PMC7840480 DOI: 10.1016/j.ultsonch.2021.105467] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Alternative methods for improving traditional food processing have increased in the last decades. Additionally, the development of novel dairy products is gaining importance due to an increased consumer demand for palatable, healthy, and minimally processed products. Ultrasonic processing or sonication is a promising alternative technology in the food industry as it has potential to improve the technological and functional properties of milk and dairy products. This review presents a detailed summary of the latest research on the impact of high-intensity ultrasound techniques in dairy processing. It explores the ways in which ultrasound has been employed to enhance milk properties and processes of interest to the dairy industry, such as homogenization, emulsification, yogurt and fermented beverages production, and food safety. Special emphasis has been given to ultrasonic effects on milk components; fermentation and spoilage by microorganisms; and the technological, functional, and sensory properties of dairy foods. Several current and potential applications of ultrasound as a processing technique in milk applications are also discussed in this review.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico
| | - Ivan A Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Juan M Tirado-Gallegos
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Rogelio Sanchez-Vega
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Mariana Huerta-Jimenez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico.
| | | | - Alma D Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico.
| |
Collapse
|