1
|
Longhitano L, Vicario N, Forte S, Giallongo C, Broggi G, Caltabiano R, Barbagallo GMV, Altieri R, Raciti G, Di Rosa M, Caruso M, Parenti R, Liso A, Busi F, Lolicato M, Mione MC, Li Volti G, Tibullo D. Lactate modulates microglia polarization via IGFBP6 expression and remodels tumor microenvironment in glioblastoma. Cancer Immunol Immunother 2023; 72:1-20. [PMID: 35654889 PMCID: PMC9813126 DOI: 10.1007/s00262-022-03215-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 01/09/2023]
Abstract
Lactic acidosis has been reported in solid tumor microenvironment (TME) including glioblastoma (GBM). In TME, several signaling molecules, growth factors and metabolites have been identified to induce resistance to chemotherapy and to sustain immune escape. In the early phases of the disease, microglia infiltrates TME, contributing to tumorigenesis rather than counteracting its growth. Insulin-like Growth Factor Binding Protein 6 (IGFBP6) is expressed during tumor development, and it is involved in migration, immune-escape and inflammation, thus providing an attractive target for GBM therapy. Here, we aimed at investigating the crosstalk between lactate metabolism and IGFBP6 in TME and GBM progression. Our results show that microglia exposed to lactate or IGFBP6 significantly increased the Monocarboxylate transporter 1 (MCT1) expression together with genes involved in mitochondrial metabolism. We, also, observed an increase in the M2 markers and a reduction of inducible nitric oxide synthase (iNOS) levels, suggesting a role of lactate/IGFBP6 metabolism in immune-escape activation. GBM cells exposed to lactate also showed increased levels of IGFBP6 and vice-versa. Such a phenomenon was coupled with a IGFBP6-mediated sonic hedgehog (SHH) ignaling increase. We, finally, tested our hypothesis in a GBM zebrafish animal model, where we observed an increase in microglia cells and igfbp6 gene expression after lactate exposure. Our results were confirmed by the analysis of human transcriptomes datasets and immunohistochemical assay from human GBM biopsies, suggesting the existence of a lactate/IGFBP6 crosstalk in microglial cells, so that IGFBP6 expression is regulated by lactate production in GBM cells and in turn modulates microglia polarization.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Forte
- IOM Ricerca, 95029 Viagrande, CT Italy ,Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Giuseppe Broggi
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | | | - Roberto Altieri
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Giuseppina Raciti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Arcangelo Liso
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Federica Busi
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Caterina Mione
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
2
|
A Novel Immune Gene-Related Prognostic Score Predicts Survival and Immunotherapy Response in Glioma. Medicina (B Aires) 2022; 59:medicina59010023. [PMID: 36676646 PMCID: PMC9866308 DOI: 10.3390/medicina59010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Objectives: The clinical prognosis and survival prediction of glioma based on gene signatures derived from heterogeneous tumor cells are unsatisfactory. This study aimed to construct an immune gene-related prognostic score model to predict the prognosis of glioma and identify patients who may benefit from immunotherapy. Methods: 23 immune-related genes (IRGs) associated with glioma prognosis were identified through weighted gene co-expression network analysis (WGCNA) and Univariate Cox regression analysis based on large-scale RNA-seq data. Eight IRGs were retained as candidate predictors and formed an immune gene-related prognostic score (IGRPS) by multifactorial Cox regression analysis. The potential efficacy of immune checkpoint blockade (ICB) therapy of different subgroups was compared by The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. We further adopted a series of bioinformatic methods to characterize the differences in clinicopathological features and the immune microenvironment between the different risk groups. Finally, a nomogram integrating IGRPS and clinicopathological characteristics was built to accurately predict the prognosis of glioma. Results: Patients in the low-risk group had a better prognosis than those in the high-risk group. Patients in the high-risk group showed higher TIDE scores and poorer responses to ICB therapy, while patients in the low-risk group may benefit more from ICB therapy. The distribution of age and tumor grade between the two subgroups was significantly different. Patients with low IGRPS harbor a high proportion of natural killer cells and are sensitive to ICB treatment. While patients with high IGRPS display relatively poor prognosis, a higher expression level of DNA mismatch repair genes, high infiltrating of immunosuppressive cells, and poor ICB therapeutic outcomes. Conclusions: We demonstrated that the IGRPS model can independently predict the clinical prognosis as well as the ICB therapy responses of glioma patients, thus having important implications on the design of immune-based therapeutic strategies.
Collapse
|
3
|
Giotta Lucifero A, Luzzi S. Emerging immune-based technologies for high-grade gliomas. Expert Rev Anticancer Ther 2022; 22:957-980. [PMID: 35924820 DOI: 10.1080/14737140.2022.2110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The selection of a tailored and successful strategy for high-grade gliomas (HGGs) treatment is still a concern. The abundance of aberrant mutations within the heterogenic genetic landscape of glioblastoma strongly influences cell expansion, proliferation, and therapeutic resistance. Identification of immune evasion pathways opens the way to novel immune-based strategies. This review intends to explore the emerging immunotherapies for HGGs. The immunosuppressive mechanisms related to the tumor microenvironment and future perspectives to overcome glioma immunity barriers are also debated. AREAS COVERED An extensive literature review was performed on the PubMed/Medline and ClinicalTrials.gov databases. Only highly relevant articles in English and published in the last 20 years were selected. Data about immunotherapies coming from preclinical and clinical trials were summarized. EXPERT OPINION The overall level of evidence about the efficacy and safety of immunotherapies for HGGs is noteworthy. Monoclonal antibodies have been approved as second-line treatment, while peptide vaccines, viral gene strategies, and adoptive technologies proved to boost a vivid antitumor immunization. Malignant brain tumor-treating fields are ever-changing in the upcoming years. Constant refinements and development of new routes of drug administration will permit to design of novel immune-based treatment algorithms thus improving the overall survival.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
4
|
Effects of Vitexin, a Natural Flavonoid Glycoside, on the Proliferation, Invasion, and Apoptosis of Human U251 Glioblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3129155. [PMID: 35281458 PMCID: PMC8906934 DOI: 10.1155/2022/3129155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma is a highly aggressive brain tumor characterized by high recurrence and poor prognosis. Vitexin has shown activities against esophageal, liver, lung, colorectal, and ovarian cancers; however, there is little knowledge on the activity of vitexin against glioblastoma. This study was therefore designed with aims to examine the effects of vitexin on proliferation, invasion, and apoptosis of human U251 glioblastoma cells and explore the underlying molecular mechanisms using mRNA sequencing and molecular docking. Vitexin was found to inhibit cell proliferation, colony formation, and invasion and promote apoptosis in U251 cells. mRNA sequencing identified 499 differentially expressed genes in vitexin-treated U251 cells relative to controls, including 154 upregulated genes and 345 downregulated genes. Gene ontology (GO) term enrichment analysis revealed that the upregulated genes were most significantly enriched in intrinsic apoptotic signaling pathway and the downregulated genes were most significantly enriched in positive regulation of cell development and positive regulation of locomotion relating to biological processes, endoplasmic reticulum lumen and side of membrane relating to cellular components, and receptor ligand activity and receptor regulator activity relating to molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the upregulated genes were involved in the pathways of transcriptional misregulation in cancer and the downregulated genes were involved in FoxO and JAK/STAT signaling pathways. Western blotting assay revealed that vitexin treatment resulted in reduced p-JAK1, p-JAK3, and p-STAT3 protein expression in U251 cells relative to untreated controls, and molecular docking predicted that vitexin had docking scores of –8.8, –10.8, and –10.5 kJ/mol with STAT3, JAK1, and JAK2, respectively. The results of the present study demonstrate that vitexin inhibits the proliferation and invasion and induces the apoptosis of glioblastoma U251 cells through suppressing the JAK/STAT3 signaling pathway, and vitexin may be a promising potential agent for the chemotherapy of glioblastoma.
Collapse
|
5
|
Ge Y, Cheng D, Jia Q, Xiong H, Zhang J. Mechanisms Underlying the Role of Myeloid-Derived Suppressor Cells in Clinical Diseases: Good or Bad. Immune Netw 2021; 21:e21. [PMID: 34277111 PMCID: PMC8263212 DOI: 10.4110/in.2021.21.e21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive activity and are morphologically similar to conventional monocytes and granulocytes. The development and classification of these cells have, however, been controversial. The activation network of MDSCs is relatively complex, and their mechanism of action is poorly understood, creating an avenue for further research. In recent years, MDSCs have been found to play an important role in immune regulation and in effectively inhibiting the activity of effector lymphocytes. Under certain conditions, particularly in the case of tissue damage or inflammation, MDSCs play a leading role in the immune response of the central nervous system. In cancer, however, this can lead to tumor immune evasion and the development of related diseases. Under cancerous conditions, tumors often alter bone marrow formation, thus affecting progenitor cell differentiation, and ultimately, MDSC accumulation. MDSCs are important contributors to tumor progression and play a key role in promoting tumor growth and metastasis, and even reduce the efficacy of immunotherapy. Currently, a number of studies have demonstrated that MDSCs play a key regulatory role in many clinical diseases. In light of these studies, this review discusses the origin of MDSCs, the mechanisms underlying their activation, their role in a variety of clinical diseases, and their function in immune response regulation.
Collapse
Affiliation(s)
- Yongtong Ge
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Qingzhi Jia
- Affiliated Hospital of Jining Medical College, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| |
Collapse
|
6
|
Wang JJ, Wang H, Zhu BL, Wang X, Qian YH, Xie L, Wang WJ, Zhu J, Chen XY, Wang JM, Ding ZL. Development of a prognostic model of glioma based on immune-related genes. Oncol Lett 2020; 21:116. [PMID: 33376548 PMCID: PMC7751470 DOI: 10.3892/ol.2020.12377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common type of primary brain cancer, and the prognosis of most patients with glioma, and particularly that of patients with glioblastoma, is poor. Tumor immunity serves an important role in the development of glioma. However, immunotherapy for glioma has not been completely successful, and thus, comprehensive examination of the immune-related genes (IRGs) of glioma is required. In the present study, differentially expressed genes (DEGs) and differentially expressed IRGs (DEIRGs) were identified using the edgeR package. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used for functional enrichment analysis of DEIRGs. Survival-associated IRGs were selected via univariate Cox regression analysis. A The Cancer Genome Atlas prognostic model and GSE43378 validation model were established using lasso-penalized Cox regression analysis. Based on the median risk score value, patients were divided into high-risk and low-risk groups for clinical analysis. Receiver operating characteristic curve and nomogram analyses were used to assess the accuracy of the models. Reverse transcription-quantitative PCR was performed to measure the expression levels of relevant genes, such as cyclin-dependent kinase 4 (CDK4), interleukin 24 (IL24), NADPH oxidase 4 (NOX4), bone morphogenetic protein 2 (BMP2) and baculoviral IAP repeat containing 5 (BIRC5). A total of 3,238 DEGs, including 1,950 upregulated and 1,288 downregulated DEGs, and 97 DEIRGs, including 60 upregulated and 37 downregulated DEIRGs, were identified. ‘Neuroactive ligand-receptor interaction’ and ‘Cytokine-cytokine receptor interaction’ were the most significantly enriched pathways according to KEGG pathway analysis. A prognostic model and a validation prognostic model were created for glioma, including 15 survival-associated IRGs (FCER1G, NOX4, TRIM5, SOCS1, APOBEC3C, BIRC5, VIM, TNC, BMP2, CMTM3, IL24, JAG1, CALCRL, HNF4G and CDK4). Furthermore, multivariate Cox regression analysis results suggested that age, high WHO Grade by histopathology, wild type isocitrate dehydrogenase 1 and high risk score were independently associated with poor overall survival. The infiltration of B cells, CD8+ T cells, dendritic cells, macrophages and neutrophils was positively associated with the prognostic risk score. In the present study, several clinically significant survival-associated IRGs were identified, and a prognosis evaluation model of glioma was established.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Han Wang
- Department of Oncology, Jining Cancer Hospital, Jining, Shandong 272000, P.R. China
| | - Bao-Long Zhu
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Xiang Wang
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Yong-Hong Qian
- Department of Radio-Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Lei Xie
- Department of Oncology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Wen-Jie Wang
- Department of Radio-Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Jie Zhu
- Department of Oncology, Changzhou Traditional Chinese Medical Hospital, Changzhou, Jiangsu, 213003, P.R. China
| | - Xing-Yu Chen
- Department of General Surgery, Taizhou Fourth People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jing-Mei Wang
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310002, P.R. China
| | - Zhi-Liang Ding
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
7
|
da Silva AB, Cerqueira Coelho PL, das Neves Oliveira M, Oliveira JL, Oliveira Amparo JA, da Silva KC, Soares JRP, Pitanga BPS, Dos Santos Souza C, de Faria Lopes GP, da Silva VDA, de Fátima Dias Costa M, Junier MP, Chneiweiss H, Moura-Neto V, Costa SL. The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav Immun 2020; 85:170-185. [PMID: 31059805 DOI: 10.1016/j.bbi.2019.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Microglia cells are the immune effector in the Central Nervous System (CNS). However, studies have showed that they contribute more to glioma progression than to its elimination. Rutin and its aglycone quercetin are flavonoids present in many fruits as well as plants and have been demonstrated to bear anti-inflammatory, antioxidant and antitumor properties also to human glioblastoma cell lines. Previous studies also demonstrated that rutin, isolated from the Brazilian plant Dimorphandra mollis Bent., presents immunomodulatory effect on astrocytes and microglia. In this study, we investigate the antitumor and immunomodulatory properties of rutin and its aglycone quercetin on the viability of glioma cells alone and under direct and indirect interaction with microglia. Flavonoid treatment of rat C6 glioma cells induced inhibition of proliferation and migration, and also induced microglia chemotaxis that was associated to the up regulation of tumor necrosis factor (TNF) and the down regulation of Interleukin 10 (IL-10) at protein and mRNA expression levels, regulation of mRNA expression for chemokines CCL2, CCL5 and CX3CL1, and Heparin Binding Growth Factor (HDGF), Insulin-like growth factor (IGF) and Glial cell-derived neurotrophic factor (GDNF) growth factors. Treatment of human U251 and TG1 glioblastoma cells with both flavonoids also modulated negatively the expression of mRNA for IL-6 and IL-10 and positively the expression of mRNA for TNF characterizing changes to the immune regulatory profile. Treatment of microglia and C6 cells either in co-cultures or during indirect interaction, via conditioned media from glioma cells treated with flavonoids or via conditioned media from microglia treated with flavonoids reduced proliferation and migration of glioma cells. It also directed microglia towards an inflammatory profile with increased expression of mRNA for IL-1β, IL-6, IL-18 and decreased expression of mRNA for nitric oxide synthase 2 (NOS2) and prostaglandin-endoperoxide synthase 2 (PTGS2), arginase and transforming growth factor beta (TGF-β), as well as Insulin-like growth factor (IGF). Treatment of U251 cells with flavonoids also reduced tumorigenesis when the cells were xenotransplanted in rat brains, and directed microglia and also astrocytes in the microenvironment of tumor cell implantation as well as in the brain parenchyma to a not favorable molecular inflammatory profile to the glioma growth, as observed in cultures. Together these results demonstrate that the flavonoid rutin and its aglycone quercetin present antiglioma effects related to the property of modulating the microglial inflammatory profile and may be considered for molecular and preclinical studies as adjuvant molecules for treatment of gliomas.
Collapse
Affiliation(s)
- Alessandra Bispo da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Paulo Lucas Cerqueira Coelho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Mona das Neves Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Joana Luz Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Jéssika Alves Oliveira Amparo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Janaina Ribeiro Pereira Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Bruno Penas Seara Pitanga
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Cleide Dos Santos Souza
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Giselle Pinto de Faria Lopes
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil; Department of Marine Biotechnology, Institute of Studies of the Sea Studies Institute Admiral Paulo Moreira (IEAPM), 28930-000 Arraial do Cabo, Rio de Janeiro and Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil; INCT/CNPq-Neurociência Translacional (INNT), ICB/UFRJ, Av. Carlos Chagas Filho 373, CEP 21941-902 Rio de Janeiro, Brazil
| | - Marie Pierre Junier
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Campus Pierre et Marie Curie, 75005 Paris, France
| | - Hervé Chneiweiss
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Campus Pierre et Marie Curie, 75005 Paris, France
| | - Vivaldo Moura-Neto
- State Institute of the Brain Paulo Niemeyer, 20230-024 Rio de Janeiro, Rio de Janeiro, Brazil; INCT/CNPq-Neurociência Translacional (INNT), ICB/UFRJ, Av. Carlos Chagas Filho 373, CEP 21941-902 Rio de Janeiro, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil; INCT/CNPq-Neurociência Translacional (INNT), ICB/UFRJ, Av. Carlos Chagas Filho 373, CEP 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
da Silveira EF, Ferreira LM, Gehrcke M, Cruz L, Pedra NS, Ramos PT, Bona NP, Soares MSP, Rodrigues R, Spanevello RM, Cunico W, Stefanello FM, Azambuja JH, Horn AP, Braganhol E. 2-(2-Methoxyphenyl)-3-((Piperidin-1-yl)ethyl)thiazolidin-4-One-Loaded Polymeric Nanocapsules: In Vitro Antiglioma Activity and In Vivo Toxicity Evaluation. Cell Mol Neurobiol 2019; 39:783-797. [PMID: 31115733 PMCID: PMC11462846 DOI: 10.1007/s10571-019-00678-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Among gliomas types, glioblastoma is considered the most malignant and the worst form of primary brain tumor. It is characterized by high infiltration rate and great angiogenic capacity. The presence of an inflammatory microenvironment contributes to chemo/radioresistance, resulting in poor prognosis for patients. Recent data show that thiazolidinones have a wide range of pharmacological properties, including anti-inflammatory and antiglioma activities. Nanocapsules of biodegradable polymers become an alternative to cancer treatment since they provide targeted drug delivery and could overcome blood-brain barrier. Therefore, here we investigated the in vitro antiglioma activity and the potential in vivo toxicity of 2- (2-methoxyphenyl) -3- ((piperidin-1-yl) ethyl) thiazolidin-4-one-loaded polymeric nanocapsules (4L-N). Nanocapsules were prepared and characterized in terms of particle size, polydispersity index, zeta potential, pH, molecule content and encapsulation efficiency. Treatment with 4L-N selectively decreased human U138MG and rat C6 cell lines viability and proliferation, being even more efficient than the free-form molecule (4L). In addition, 4L-N did not promote toxicity to primary astrocytes. We further demonstrated that the treatment with sub-therapeutic dose of 4L-N did not alter weight, neither resulted in mortality, toxicity or peripheral damage to Wistar rats. Finally, 4L as well as 4L-N did not alter makers of oxidative damage, such as TBARS levels and total sulfhydryl content, and did not change antioxidant enzymes SOD and CAT activity in liver and brain of treated rats. Taken together, these data indicate that the nanoencapsulation of 4L has potentiated its antiglioma effect and does not cause in vivo toxicity.
Collapse
Affiliation(s)
- Elita Ferreira da Silveira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Luana Mota Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mailine Gehrcke
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Nathália Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Priscila Treptow Ramos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rosélia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliana Hofstatter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 - Prédio Principal - sala 304, Porto Alegre, RS, CEP: 90.050-170, Brazil.
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 - Prédio Principal - sala 304, Porto Alegre, RS, CEP: 90.050-170, Brazil.
| |
Collapse
|
9
|
Izraely S, Ben-Menachem S, Sagi-Assif O, Telerman A, Zubrilov I, Ashkenazi O, Meshel T, Maman S, Orozco JI, Salomon MP, Marzese DM, Pasmanik-Chor M, Pikarski E, Ehrlich M, Hoon DS, Witz IP. The metastatic microenvironment: Melanoma-microglia cross-talk promotes the malignant phenotype of melanoma cells. Int J Cancer 2018; 144:802-817. [DOI: 10.1002/ijc.31745] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Sivan Izraely
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Shlomit Ben-Menachem
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Alona Telerman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Inna Zubrilov
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Ofir Ashkenazi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Shelly Maman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Javier I.J. Orozco
- Department of Translational Molecular Medicine; John Wayne Cancer Institute at Providence Saint John's Health Center; Santa Monica CA
| | - Matthew P. Salomon
- Department of Translational Molecular Medicine; John Wayne Cancer Institute at Providence Saint John's Health Center; Santa Monica CA
| | - Diego M. Marzese
- Department of Translational Molecular Medicine; John Wayne Cancer Institute at Providence Saint John's Health Center; Santa Monica CA
| | - Metsada Pasmanik-Chor
- Bioinforamatics Unit, The George S. Wise Faculty of Life Science; Tel Aviv University; Tel-Aviv Israel
| | - Eli Pikarski
- The Lautenberg Center for Immunology and Cancer Research; Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School; Jerusalem Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Dave S.B. Hoon
- Department of Translational Molecular Medicine; John Wayne Cancer Institute at Providence Saint John's Health Center; Santa Monica CA
| | - Isaac P. Witz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
10
|
Azambuja JH, da Silveira EF, de Carvalho TR, Oliveira PS, Pacheco S, do Couto CT, Beira FT, Stefanello FM, Spanevello RM, Braganhol E. Glioma sensitive or chemoresistant to temozolomide differentially modulate macrophage protumor activities. Biochim Biophys Acta Gen Subj 2017; 1861:2652-2662. [PMID: 28713019 DOI: 10.1016/j.bbagen.2017.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glioblastomas are the most devastating brain tumor characterized by chemoresistance development and poor prognosis. Macrophages are a component of tumor microenvironment related to glioma malignancy. The relation among inflammation, innate immunity and cancer is accepted; however, molecular and cellular mechanisms mediating this relation and chemoresistance remain unresolved. OBJECTIVE Here we evaluated whether glioma sensitive or resistant to temozolomide (TMZ) modulate macrophage polarization and inflammatory pathways associated. The impact of glioma-macrophage crosstalk on glioma proliferation was also investigated. METHODS GL261 glioma chemoresistance was developed by exposing cells to increasing TMZ concentrations over a period of 6months. Mouse peritoneal macrophages were exposed to glioma-conditioned medium or co-cultured directly with glioma sensitive (GL) or chemoresistant (GLTMZ). Macrophage polarization, in vitro and in vivo glioma proliferation, redox parameters, ectonucleotidase activity and ATP cytotoxicity were performed. RESULTS GLTMZ cells were more effective than GL in induce M2-like macrophage polarization and in promote a strong immunosuppressive environment characterized by high IL-10 release and increased antioxidant potential, which may contribute to glioma chemoresistance and proliferation. Interestingly, macrophage-GLTMZ crosstalk enhanced in vitro and in vivo proliferation of chemoresistant cells, decreased ectonucleotidase activities, which was followed by increased macrophage sensitivity to ATP induced death. CONCLUSIONS Results suggest a differential macrophage modulation by GLTMZ cells, which may favor the maintenance of immunosuppressive tumor microenvironment and glioma proliferation. GENERAL SIGNIFICANCE The induction of immunosuppressive environment and macrophage education by chemoresistant gliomas may be important for tumor recovery after chemotherapy and could be considered to overcome chemoresistance development.
Collapse
Affiliation(s)
- Juliana H Azambuja
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Elita F da Silveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Taíse R de Carvalho
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pathise S Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Simone Pacheco
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carlus T do Couto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fátima T Beira
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rosélia M Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil.
| |
Collapse
|
11
|
da Silveira EF, Azambuja JH, de Carvalho TR, Kunzler A, da Silva DS, Teixeira FC, Rodrigues R, Beira FT, de Cássia Sant Anna Alves R, Spanevello RM, Cunico W, Stefanello FM, Horn AP, Braganhol E. Synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones exhibit selective in vitro antitumoral activity and inhibit cancer cell growth in a preclinical model of glioblastoma multiforme. Chem Biol Interact 2017; 266:1-9. [PMID: 28174097 DOI: 10.1016/j.cbi.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/03/2017] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is the worst form of primary brain tumor, which has a high rate of infiltration and resistance to radiation and chemotherapy, resulting in poor prognosis for patients. Recent studies show that thiazolidinones have a wide range of pharmacological properties including antimicrobial, anti-inflammatory, anti-oxidant and anti-tumor. Here, we investigate the effect antiglioma in vitro of a panel of sixteen synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones where 13 of these decreased the viability of glioma cells 30-65% (100 μM) compared with controls. The most promising compounds such as 4d, 4l, 4m and 4p promoted glioma reduction of viability greater than 50%, were further tested at lower concentrations (12.5, 25, 50 and 100 μM). Also, the data showed that the compounds 4d, 4l, 4m and 4p induced cell death primarily through necrosis and late apoptosis mechanisms. Interestingly, none of these 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones were cytotoxic for primary astrocytes, which were used as a non-transformed cell model, indicating selectivity. Our results also show that the treatment with sub-therapeutic doses of 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones (4d, 4l and 4p) reduced in vivo glioma growth as well as malignant characteristics of implanted tumors such as intratumoral hemorrhage and peripheral pseudopalisading. Importantly, 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones treatment did not induce mortality or peripheral damage to animals. Finally, 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones also changed the nitric oxide metabolism which may be associated with reduced growth and malignity characteristics of gliomas. These data indicates for the first time the therapeutic potential of synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones to GBM treatment.
Collapse
Affiliation(s)
- Elita F da Silveira
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Juliana H Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Taíse Rosa de Carvalho
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Alice Kunzler
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Daniel S da Silva
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernanda C Teixeira
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fátima T Beira
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rita de Cássia Sant Anna Alves
- Departamento de Patologia e de Medicina Legal, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselia M Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wilson Cunico
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana P Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|