1
|
Huang Y, Woolf MS, Wang CC, Naser SM, Wheeler AM, Mylott WR, Ma E, Rosenbaum AI. Comprehensive performance evaluation of ligand-binding assay-LC-MS/MS method for co-dosed monoclonal anti-SARS-CoV-2 antibodies (AZD7442). Bioanalysis 2024; 16:149-163. [PMID: 38385904 PMCID: PMC11845114 DOI: 10.4155/bio-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Aims: AZD7442 is a combination SARS-CoV-2 therapy comprising two co-dosed monoclonal antibodies. Materials & methods: The authors validated a hybrid ligand-binding assay-LC-MS/MS method for pharmacokinetic assessment of AZD7442 in human serum with nominal concentration range of each analyte of 0.300-30.0 μg/ml. Results: Validation results met current regulatory acceptance criteria. The validated method supported three clinical trials that spanned more than 17 months and ≥720 analytical runs (∼30,000 samples and ∼3000 incurred sample reanalyses per analyte). The data generated supported multiple health authority interactions, across the globe. AZD7442 (EVUSHELD) was approved in 12 countries for pre-exposure prophylaxis of COVID-19. Conclusion: The results reported here demonstrate the robust, high-throughput capability of the hybrid ligand-binding assay-LC-MS/MS approach being employed to support-next generation versions of EVUSHELD, AZD3152.
Collapse
Affiliation(s)
- Yue Huang
- Integrated Bioanalysis Clinical Pharmacology & Safety Sciences R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Michael Shane Woolf
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Chun-Chi Wang
- Integrated Bioanalysis Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Sami M Naser
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Aaron M Wheeler
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - William R Mylott
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Eric Ma
- Chromatographic Services – Research & Development Biologics by LC–MS/MSPPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis Clinical Pharmacology & Safety Sciences R&D, AstraZeneca, South San Francisco, CA 94080, USA
| |
Collapse
|
2
|
Tölke SA, Masetto T, Reuschel T, Grimmler M, Bindila L, Schneider K. Immunoaffinity LC-MS/MS Quantification of the Sepsis Biomarker Procalcitonin Using Magnetic- and Polystyrene-Bead Immobilized Polyclonal Antibodies. J Proteome Res 2023; 22:3135-3148. [PMID: 37672672 DOI: 10.1021/acs.jproteome.3c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Procalcitonin (PCT) is a biomarker for bacterial sepsis, and accurate quantification of PCT is critical for sepsis diagnosis and treatment. Immunological PCT quantification methods are routinely used in clinical laboratories, yet there is a need for harmonization of PCT quantification protocols. An orthogonal method to clinical immunological assays, such as LC-MS/MS, is required. In this study, a highly sensitive and robust immunoaffinity LC-MRM quantitative method for detecting procalcitonin in human serum has been developed. An initial comparison of immunocapture of PCT with a polyclonal anti-PCT antibody immobilized on polystyrene nanoparticles (Latex) and magnetic beads demonstrated superior performance with magnetic beads. Three tryptic PCT peptides from the N- and C-terminal regions of PCT were selected for LC-MS/MS quantification. For PCT quantification, an LLOQ of 0.25 ng/mL of PCT in human serum was achieved using a sample volume of 1 mL. The method's trueness and precision consistently lie within the 15% margin. The parallel measurement of three PCT peptides may allow future differentiation of intact PCT vs other PCT forms originating from potential degradation, processing, or polymorphisms. An established and validated LC-MRM-based quantification of PCT will be relevant as an orthogonal method for harmonization and standardization of clinical assays for PCT.
Collapse
Affiliation(s)
- Sebastian-Alexander Tölke
- Institute for Biomolecular Research, Hochschule Fresenius, University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, 55131 Mainz, Germany
| | - Thomas Masetto
- Institute of Molecular Medicine I, Medical Faculty,, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- DiaSys Diagnostic Systems GmbH, Alte Straße 9, 65558 Holzheim, Germany
| | - Thomas Reuschel
- Institute for Biomolecular Research, Hochschule Fresenius, University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany
| | - Matthias Grimmler
- Institute for Biomolecular Research, Hochschule Fresenius, University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany
- DiaSys Diagnostic Systems GmbH, Alte Straße 9, 65558 Holzheim, Germany
- DiaServe Laboratories GmbH, Seeshaupter Straße 27, 82393 Iffeldorf, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, 55131 Mainz, Germany
| | - Klaus Schneider
- Institute for Biomolecular Research, Hochschule Fresenius, University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany
| |
Collapse
|
3
|
REGEN-COV ® antibody cocktail bioanalytical strategy: comparison of LC-MRM-MS and immunoassay methods for drug quantification. Bioanalysis 2021; 13:1827-1836. [PMID: 34743612 PMCID: PMC8579949 DOI: 10.4155/bio-2021-0190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: In response to the COVID-19 pandemic, Regeneron developed the anti-SARS-CoV-2 monoclonal antibody cocktail, REGEN-COV® (RONAPREVE® outside the USA). Drug concentration data was important for determination of dose, so a two-part bioanalytical strategy was implemented to ensure the therapy was rapidly available for use. Results & methodology: Initially, a liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS) assay, was used to analyze early-phase study samples. Subsequently, a validated electrochemiluminescence (ECL) immunoassay was implemented for high throughput sample analysis for all samples. A comparison of drug concentration data from the methods was performed which identified strong linear correlations and for Bland-Altman, small bias. In addition, pharmacokinetic data from both methods produced similar profiles and parameters. Discussion & conclusion: This novel bioanalytical strategy successfully supported swift development of a critical targeted therapy during the COVID-19 public health emergency.
Collapse
|
4
|
Development of a chromatography-free method for high-throughput MS-based bioanalysis of therapeutic monoclonal antibodies. Bioanalysis 2021; 13:725-735. [PMID: 33856232 DOI: 10.4155/bio-2021-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Our objective was to test the feasibility of developing an LC-free, MS-based approach for high-throughput bioanalysis of humanized therapeutic monoclonal antibodies. Methodology: A universal tryptic peptide from human IgG1, IgG3 and IgG4 was selected as the surrogate peptide for quantitation. After tryptic digestion, the surrogate peptide was fractionated via solid-phase extraction before being subjected to direct infusion-based MS/MS analysis. A high-resolution, multiplexed (MSX = 2) parallel reaction monitoring method was developed for data acquisition. Results & conclusion: This proof-of-concept study demonstrated the feasibility of achieving high-throughput MS-based bioanalysis of monoclonal antibodies using an LC-free workflow with sensitivity comparable to conventional LC-MS/MS-based methods.
Collapse
|