1
|
Abbasifard M, Bagherzadeh K, Khorramdelazad H. The story of clobenpropit and CXCR4: can be an effective drug in cancer and autoimmune diseases? Front Pharmacol 2024; 15:1410104. [PMID: 39070795 PMCID: PMC11272485 DOI: 10.3389/fphar.2024.1410104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Clobenpropit is a histamine H3 receptor antagonist and has developed as a potential therapeutic drug due to its ability to inhibit CXCR4, a chemokine receptor involved in autoimmune diseases and cancer pathogenesis. The CXCL12/CXCR4 axis involves several biological phenomena, including cell proliferation, migration, angiogenesis, inflammation, and metastasis. Accordingly, inhibiting CXCR4 can have promising clinical outcomes in patients with malignancy or autoimmune disorders. Based on available knowledge, Clobenpropit can effectively regulate the release of monocyte-derived inflammatory cytokine in autoimmune diseases such as juvenile idiopathic arthritis (JIA), presenting a potential targeted target with possible advantages over current therapeutic approaches. This review summarizes the intricate interplay between Clobenpropit and CXCR4 and the molecular mechanisms underlying their interactions, comprehensively analyzing their impact on immune regulation. Furthermore, we discuss preclinical and clinical investigations highlighting the probable efficacy of Clobenpropit for managing autoimmune diseases and cancer. Through this study, we aim to clarify the immunomodulatory role of Clobenpropit and its advantages and disadvantages as a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Nastasi N, Bruno G, Favre C, Calvani M. Role of β3-Adrenergic Receptor in Bone Marrow Transplant as Therapeutical Support in Cancer. Front Oncol 2022; 12:889634. [PMID: 35756654 PMCID: PMC9213652 DOI: 10.3389/fonc.2022.889634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
β3-adrenergic receptor (β3-AR) is the last β-adrenoceptor subtype identified. β3-AR is widely expressed and regulates numerous physiological processes, and it is also a potential target for the treatment of many diseases, including cancers. For some types of cancers, bone marrow transplant (BMT) represents a valid therapeutic support, especially in the case of the necessity of high-dose chemotherapy and radiotherapy. For a successful BMT, it is necessary that a donor’s hematopoietic stem cells (HSCs) correctly reach the staminal niche in the recipient’s bone marrow (BM) and contribute to restore normal hematopoiesis in order to rapidly repopulate BM and provide all the healthy blood cells of which the patient needs. Generally, it takes a long time. Control and accelerate homing and engraftment of HSCs could represent a helpful approach to avoid the complications and undesirable effects of BMT. The evidence that the β-adrenergic system has a role in the BM can be found in different studies, and this leads us to hypothesize that studying this field could be interesting to meliorate the most critical aspects of a BMT. Here, we collected the data present in literature about the role of β3-AR in the BM with the purpose of discovering a possible utility of β3-AR modulation in regulating HSC trafficking and hematopoiesis.
Collapse
Affiliation(s)
- Nicoletta Nastasi
- Department of Health Sciences, University of Florence, Florence, Italy.,Division of Pediatric Oncology/Hematology, Meyer Children's Hospital, Florence, Italy
| | - Gennaro Bruno
- Department of Health Sciences, University of Florence, Florence, Italy.,Division of Pediatric Oncology/Hematology, Meyer Children's Hospital, Florence, Italy
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital, Florence, Italy
| | - Maura Calvani
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
3
|
Torrecillas-Baena B, Gálvez-Moreno MÁ, Quesada-Gómez JM, Dorado G, Casado-Díaz A. Influence of Dipeptidyl Peptidase-4 (DPP4) on Mesenchymal Stem-Cell (MSC) Biology: Implications for Regenerative Medicine - Review. Stem Cell Rev Rep 2021; 18:56-76. [PMID: 34677817 DOI: 10.1007/s12015-021-10285-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase IV (DPP4) is a ubiquitous protease that can be found in membrane-anchored or soluble form. Incretins are one of the main DPP4 substrates. These hormones regulate glucose levels, by stimulating insulin secretion and decreasing glucagon production. Because DPP4 levels are high in diabetes, DPP4 inhibitor (DPP4i) drugs derived from gliptin are widespread used as hypoglycemic agents for its treatment. However, as DPP4 recognizes other substrates such as chemokines, growth factors and neuropeptides, pleiotropic effects have been observed in patients treated with DPP4i. Several of these substrates are part of the stem-cell niche. Thus, they may affect different physiological aspects of mesenchymal stem-cells (MSC). They include viability, differentiation, mobilization and immune response. MSC are involved in tissue homeostasis and regeneration under both physiological and pathological conditions. Therefore, such cells and their secretomes have a high clinical potential in regenerative medicine. In this context, DPP4 activity may modulate different aspects of MSC regenerative capacity. Therefore, the aim of this review is to analyze the effect of different DPP4 substrates on MSC. Likewise, how the regulation of DPP4 activity by DPP4i can be applied in regenerative medicine. That includes treatment of cardiovascular and bone pathologies, cutaneous ulcers, organ transplantation and pancreatic beta-cell regeneration, among others. Thus, DPP4i has an important clinical potential as a complement to therapeutic strategies in regenerative medicine. They involve enhancing the differentiation, immunomodulation and mobilization capacity of MSC for regenerative purposes.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071, Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
| |
Collapse
|
4
|
Huang J, Kong Y, Xie C, Zhou L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res Ther 2021; 12:197. [PMID: 33743826 PMCID: PMC7981824 DOI: 10.1186/s13287-021-02266-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure has a high prevalence and is becoming a public health problem worldwide. However, the renal replacement therapies such as dialysis are not yet satisfactory for its multiple complications. While stem/progenitor cell-mediated tissue repair and regenerative medicine show there is light at the end of tunnel. Hence, a better understanding of the characteristics of stem/progenitor cells in kidney and their homing capacity would greatly promote the development of stem cell research and therapy in the kidney field and open a new route to explore new strategies of kidney protection. In this review, we generally summarize the main stem/progenitor cells derived from kidney in situ or originating from the circulation, especially bone marrow. We also elaborate on the kidney-specific microenvironment that allows stem/progenitor cell growth and chemotaxis, and comment on their interaction. Finally, we highlight potential strategies for improving the therapeutic effects of stem/progenitor cell-based therapy. Our review provides important clues to better understand and control the growth of stem cells in kidneys and develop new therapeutic strategies.
Collapse
Affiliation(s)
- Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Yaozhong Kong
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chao Xie
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
5
|
β3-Adrenoreceptors as ROS Balancer in Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2021; 22:ijms22062835. [PMID: 33799536 PMCID: PMC8000316 DOI: 10.3390/ijms22062835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decades, the therapeutic potential of hematopoietic stem cell transplantation (HSCT) has acquired a primary role in the management of a broad spectrum of diseases including cancer, hematologic conditions, immune system dysregulations, and inborn errors of metabolism. The different types of HSCT, autologous and allogeneic, include risks of severe complications including acute and chronic graft-versus-host disease (GvHD) complications, hepatic veno-occlusive disease, lung injury, and infections. Despite being a dangerous procedure, it improved patient survival. Hence, its use was extended to treat autoimmune diseases, metabolic disorders, malignant infantile disorders, and hereditary skeletal dysplasia. HSCT is performed to restore or treat various congenital conditions in which immunologic functions are compromised, for instance, by chemo- and radiotherapy, and involves the administration of hematopoietic stem cells (HSCs) in patients with depleted or dysfunctional bone marrow (BM). Since HSCs biology is tightly regulated by oxidative stress (OS), the control of reactive oxygen species (ROS) levels is important to maintain their self-renewal capacity. In quiescent HSCs, low ROS levels are essential for stemness maintenance; however, physiological ROS levels promote HSC proliferation and differentiation. High ROS levels are mainly involved in short-term repopulation, whereas low ROS levels are associated with long-term repopulating ability. In this review, we aim summarize the current state of knowledge about the role of β3-adrenoreceptors (β3-ARs) in regulating HSCs redox homeostasis. β3-ARs play a major role in regulating stromal cell differentiation, and the antagonist SR59230A promotes differentiation of different progenitor cells in hematopoietic tumors, suggesting that β3-ARs agonism and antagonism could be exploited for clinical benefit.
Collapse
|
6
|
Yarso KY, Bellynda M, Azmiardi A, Wasita B, Heriyanto DS, Astuti I, Hakimi M, Aryandono T. Chemotherapy Negates the Effect of SDF1 mRNA to Distant Metastasis and Poor Overall Survival in Breast Cancer Patients. Asian Pac J Cancer Prev 2021; 22:757-766. [PMID: 33773539 PMCID: PMC8286657 DOI: 10.31557/apjcp.2021.22.3.757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Investigate the effect of SDF1a, nuclear, and cytoplasmic CXCR4 breast cancer tissue on metastasis and overall survival in patients with complete-chemotherapy and no-chemotherapy. METHODS Cohort ambidirectional design was employed with survival analysis that followed the patient's diagnosis until obtaining the outcome, distant metastasis, or death. We analyzed samples in three groups (all-patient, no-chemotherapy, and complete-chemotherapy groups). Breast cancer cell nuclear and cytoplasm expressions of CXCR4 protein were examined using immunohistochemistry. Amplification of mRNA SDF1a of breast cancer tissue was examined using rtPCR on 131 samples from the same initial paraffin block. RESULTS In the distant metastasis and Overall Survival (OS) analysis, there was no correlation between cytoplasmic and nuclear CXCR4 in all-patient, no-chemotherapy, and complete-chemotherapy groups. SDF1a was significantly correlated to shorter distant metastasis and poor OS in the all-patient (p=0.004 and p=0.04, respectively) and no-chemotherapy group (p=0.008 and p=0.026, respectively). However, in the complete-chemotherapy group, SDF1a was not correlated to either metastasis (p=0.527) or OS (p=0.993), advanced stage demonstrated a strong association on shorter distant metastatic in no-chemotherapy (p=0.021) and complete-chemotherapy group (p=0.004) and also poor OS in both groups (p=0.006 and p=0.002, respectively). The hormone receptor showed a protective effect on the no-chemotherapy group's OS (p= 0.019). Meanwhile, not undergoing chemotherapy was associated with poor OS in the all-patient group (p= 0.011). CONCLUSION SDF1a mRNA amplification has a significant correlation with the occurrence of metastasis and OS in all-patient and no-chemotherapy group. Undergoing chemotherapy negates the effect of SDF1a for distant metastasis and OS.
Collapse
Affiliation(s)
- Kristanto Yuli Yarso
- Department of Surgery, Oncology Division, Medical Faculty, Sebelas Maret University, Indonesia
| | - Monica Bellynda
- Department of Surgery, Medical Faculty, Sebelas Maret University, Indonesia
| | - Akhmad Azmiardi
- Department of Public Health, Faculty of Public Health, Veteran Bangun Nusantara Sukoharjo University, Indonesia
| | - Brian Wasita
- Department of Anatomical Pathology, Medical Faculty, Sebelas Maret University, Indonesia
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Medical Faculty, Gadjah Mada University, Indonesia
| | - Indwiani Astuti
- Department of Pharmacology and Therapy, Medical Faculty, Gadjah Mada University, Indonesia
| | - Mohammad Hakimi
- Department of Obstetrics and Gynecology, Medical Faculty, Gadjah Mada University, Indonesia
| | - Teguh Aryandono
- Department of Surgery, Oncology Division, Medical Faculty, Gadjah Mada University, Indonesia
| |
Collapse
|
7
|
Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice. Stem Cells Int 2020; 2020:8885154. [PMID: 33381191 PMCID: PMC7755487 DOI: 10.1155/2020/8885154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.
Collapse
|
8
|
Luo H, Sun R, Zheng Y, Huang J, Wang F, Long D, Wu Y. PIM3 Promotes the Proliferation and Migration of Acute Myeloid Leukemia Cells. Onco Targets Ther 2020; 13:6897-6905. [PMID: 32764981 PMCID: PMC7368586 DOI: 10.2147/ott.s245578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/12/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose Acute myeloid leukemia (AML) is associated with a poor overall prognosis. PIM family genes, including PIM1, PIM2, and PIM3, are proto-oncogenes that are aberrantly overexpressed in different types of human cancers. In this study, we aimed to explore and clarify the function of PIM3 in AML. Patients and Methods The expression of the three PIM genes in AML was detected using the Gene Expression Omnibus. The expression of PIM3 and PIM3 in patient samples and AML cell lines was measured using quantitative real-time polymerase chain reaction or Western blot analyses. The cellular behaviors of PIM3-overexpressing AML cell lines were detected using a CCK-8 assay, flow cytometry, Western blotting, immunofluorescence staining, and a cell migration assay. The interactions between PIM3 and phosphorylated CXCR4 (pCXCR4) were explored via immunoprecipitation. Results Higher PIM3 expression was detected in primary AML cells than in healthy donor cells. Second, PIM3 overexpression promoted AML cell proliferation and protected against spontaneous apoptosis by phosphorylating BAD (pBAD) at Ser112. Furthermore, PIM3 overexpression might promote the migration of AML cells via CXCR4. PIM3-overexpressing AML cell lines exhibited increased CXCR4 phosphorylation at Ser339, and pCXCR4 interacted with PIM3. Conclusion Our findings suggest that PIM3 regulates the proliferation, survival, and chemotaxis of AML cell lines. Moreover, pCXCR4 might mediate the regulation of PIM3-induced chemotaxis. Therefore, the inhibition of PIM3 expression may be a promising therapeutic target in AML.
Collapse
Affiliation(s)
- Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ruixue Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, People's Republic of China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Chifu I, Heinze B, Fuss CT, Lang K, Kroiss M, Kircher S, Ronchi CL, Altieri B, Schirbel A, Fassnacht M, Hahner S. Impact of the Chemokine Receptors CXCR4 and CXCR7 on Clinical Outcome in Adrenocortical Carcinoma. Front Endocrinol (Lausanne) 2020; 11:597878. [PMID: 33281749 PMCID: PMC7691376 DOI: 10.3389/fendo.2020.597878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Chemokine receptors have a negative impact on tumor progression in several human cancers and have therefore been of interest for molecular imaging and targeted therapy. However, their clinical and prognostic significance in adrenocortical carcinoma (ACC) is unknown. The aim of this study was to evaluate the chemokine receptor profile in ACC and to analyse its association with clinicopathological characteristics and clinical outcome. A chemokine receptor profile was initially evaluated by quantitative PCR in 4 normal adrenals, 18 ACC samples and human ACC cell line NCI-H295. High expression of CXCR4 and CXCR7 in both healthy and malignant adrenal tissue and ACC cells was confirmed. In the next step, we analyzed the expression and cellular localization of CXCR4 and CXCR7 in ACC by immunohistochemistry in 187 and 84 samples, respectively. These results were correlated with clinicopathological parameters and survival outcome. We detected strong membrane expression of CXCR4 and CXCR7 in 50% of ACC samples. Strong cytoplasmic CXCR4 staining was more frequent among samples derived from metastases compared to primaries (p=0.01) and local recurrences (p=0.04). CXCR4 membrane staining positively correlated with proliferation index Ki67 (r=0.17, p=0.028). CXCR7 membrane staining negatively correlated with Ki67 (r=-0.254, p=0.03) but positively with tumor size (r=0.3, p=0.02). No differences in progression-free or overall survival were observed between patients with strong and weak staining intensities for CXCR4 or CXCR7. Taken together, high expression of CXCR4 and CXCR7 in both local tumors and metastases suggests that some ACC patients might benefit from CXCR4/CXCR7-targeted therapy.
Collapse
Affiliation(s)
- Irina Chifu
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Britta Heinze
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- *Correspondence: Britta Heinze,
| | - Carmina T. Fuss
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Katharina Lang
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, Interdisciplinary Bank of Biomaterials and Data (ibdw), University of Wuerzburg, Wuerzburg, Germany
| | - Cristina L. Ronchi
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Schirbel
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
- Department of Nuclear Medicine, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Stefanie Hahner
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
10
|
Pinheiro D, Dias I, Ribeiro Silva K, Stumbo AC, Thole A, Cortez E, de Carvalho L, Weiskirchen R, Carvalho S. Mechanisms Underlying Cell Therapy in Liver Fibrosis: An Overview. Cells 2019; 8:cells8111339. [PMID: 31671842 PMCID: PMC6912561 DOI: 10.3390/cells8111339] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a common feature in most pathogenetic processes in the liver, and usually results from a chronic insult that depletes the regenerative capacity of hepatocytes and activates multiple inflammatory pathways, recruiting resident and circulating immune cells, endothelial cells, non-parenchymal hepatic stellate cells, and fibroblasts, which become activated and lead to excessive extracellular matrix accumulation. The ongoing development of liver fibrosis results in a clinically silent and progressive loss of hepatocyte function, demanding the constant need for liver transplantation in clinical practice, and motivating the search for other treatments as the chances of obtaining compatible viable livers become scarcer. Although initially cell therapy has emerged as a plausible alternative to organ transplantation, many factors still challenge the establishment of this technique as a main or even additional therapeutic tool. Herein, the authors discuss the most recent advances and point out the corners and some controversies over several protocols and models that have shown promising results as potential candidates for cell therapy for liver fibrosis, presenting the respective mechanisms proposed for liver regeneration in each case.
Collapse
Affiliation(s)
- Daphne Pinheiro
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Isabelle Dias
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Karina Ribeiro Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Erika Cortez
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Lais de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Simone Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| |
Collapse
|
11
|
Hanns P, Paczulla AM, Medinger M, Konantz M, Lengerke C. Stress and catecholamines modulate the bone marrow microenvironment to promote tumorigenesis. Cell Stress 2019; 3:221-235. [PMID: 31338489 PMCID: PMC6612892 DOI: 10.15698/cst2019.07.192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High vascularization and locally secreted factors make the bone marrow (BM) microenvironment particularly hospitable for tumor cells and bones to a preferred metastatic site for disseminated cancer cells of different origins. Cancer cell homing and proliferation in the BM are amongst other regulated by complex interactions with BM niche cells (e.g. osteoblasts, endothelial cells and mesenchymal stromal cells (MSCs)), resident hematopoietic stem and progenitor cells (HSPCs) and pro-angiogenic cytokines leading to enhanced BM microvessel densities during malignant progression. Stress and catecholamine neurotransmitters released in response to activation of the sympathetic nervous system (SNS) reportedly modulate various BM cells and may thereby influence cancer progression. Here we review the role of catecholamines during tumorigenesis with particular focus on pro-tumorigenic effects mediated by the BM niche.
Collapse
Affiliation(s)
- Pauline Hanns
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Anna M Paczulla
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Michael Medinger
- Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| | - Martina Konantz
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Division of Clinical Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
12
|
Usmani S, Sivagnanalingam U, Tkachenko O, Nunez L, Shand JC, Mullen CA. Support of acute lymphoblastic leukemia cells by nonmalignant bone marrow stromal cells. Oncol Lett 2019; 17:5039-5049. [PMID: 31186715 PMCID: PMC6507394 DOI: 10.3892/ol.2019.10188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
The present report describes work examining the manner in which nonmalignant bone marrow stromal cells prevent acute lymphoblastic leukemia (ALL) cell death. The initial focus was on the role of stromal cell-derived C-X-C motif chemokine 12 (CXCL12). Interference with CXCL12 production by stroma or blockade of its interactions with ALL by plerixafor did increase ALL cell death and in sensitive ALLs there was synergistic effect with conventional chemotherapy drugs. However, in contrast to most reports, there was considerable heterogeneity regarding the effect between 7 unique primary ALLs, with several exhibiting no sensitivity to CXCL12 blockade. The diversity in effect was not explained by differences in the expression of ALL cell surface receptors for CXCL12. The modest and variable effects of interference with CXCL12 on ALL led to the assessment of gene expression profiles of stromal cells and ALL cells. Gene set enrichment analysis identified pathways associated with metabolism and redox reactions as potentially important in the stromal cell: leukemia cell interaction. Exploratory imaging studies demonstrated bidirectional transfer of intracellular calcien-labelled molecules and also bidirectional transfer of mitochondria between stromal cells and ALL cells, providing potential means of metabolic interdependence of stromal cells and ALL cells.
Collapse
Affiliation(s)
- Sana Usmani
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Rochester, Rochester, NY 14620, USA
| | - Urmila Sivagnanalingam
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Rochester, Rochester, NY 14620, USA
| | - Olena Tkachenko
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Rochester, Rochester, NY 14620, USA
| | - Leti Nunez
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Rochester, Rochester, NY 14620, USA
| | - Jessica C Shand
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Rochester, Rochester, NY 14620, USA
| | - Craig A Mullen
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Rochester, Rochester, NY 14620, USA
| |
Collapse
|
13
|
Adrenergic Modulation of Hematopoiesis. J Neuroimmune Pharmacol 2019; 15:82-92. [PMID: 30762159 DOI: 10.1007/s11481-019-09840-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 01/11/2023]
Abstract
Hematopoiesis produce every day billions of blood cells and takes place in the bone marrow (BM) by the proliferation and differentiation of hematopoietic stem cells (HSC). HSC are found mainly adjacent to the BM vascular sinusoids where endothelial cells and mesenchimal stromal cells promote HSC maintenance by producing a variety of factors. Other cell types that regulate HSC niches include sympathetic nerves, non-myelinating Schwann cells and a variety of mature hematopoietic cells such as macrophages, neutrophils, and megakaryocytes. This review will focus on the role of adrenergic signals, i.e. of catecholamines, in the regulation of the HSC niche. The available evidence is rather controversial possibly due to the fact that adrenergic receptors are expressed by many cellular components of the niche and also by the often neglected observation that catecholamines may be produced and released also by the BM cells themselves. In addition one has to consider that, physiologically, the sympathetic nervous system (SNS) activity follows a circadian rhythmicity as driven by the suprachiasmatic nucleus (SCN) of the hypothalamus but may be also activated by cognitive and non-cognitive environmental stimuli. The adrenergic modulation of hematopoiesis holds a considerable potential for pharmacological therapeutic approaches in a variety of hematopoietic disorders and for HSC transplantation however the complexity of the system demands further studies. Graphical Abstract Sympathetic nerve termini may release NE while mature BM cells may release norepinephrine (NE) and / or epinephrine (E). Both may bind to β-adrenergic receptor (AR) expressed in nestin+MSC in the hematopoietic stem cell (HSC) niche and regulate the physiological trafficking of HSC by modulating the expression of CXCL12 and SCF. Both NE and E may also activate Lin - c-Kit+ Sca-1+ (LKS) cell via another AR. In addition, NE may also signal to α1-AR expressed in pre-B cells which by TGF-β secretion might regulate proliferation of their lymphoid progenitors in an autocrine manner and/or inhibit myeloid progenitors.
Collapse
|
14
|
Shanmugam MK, Ahn KS, Lee JH, Kannaiyan R, Mustafa N, Manu KA, Siveen KS, Sethi G, Chng WJ, Kumar AP. Celastrol Attenuates the Invasion and Migration and Augments the Anticancer Effects of Bortezomib in a Xenograft Mouse Model of Multiple Myeloma. Front Pharmacol 2018; 9:365. [PMID: 29773987 PMCID: PMC5943600 DOI: 10.3389/fphar.2018.00365] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/28/2018] [Indexed: 01/05/2023] Open
Abstract
Several lines of evidence have demonstrated that deregulated activation of NF-κB plays a pivotal role in the initiation and progression of a variety of cancers including multiple myeloma (MM). Therefore, novel molecules that can effectively suppress deregulated NF-κB upregulation can potentially reduce MM growth. In this study, the effect of celastrol (CSL) on patient derived CD138+ MM cell proliferation, apoptosis, cell invasion, and migration was investigated. In addition, we studied whether CSL can potentiate the apoptotic effect of bortezomib, a proteasome inhibitor in MM cells and in a xenograft mouse model. We found that CSL significantly reduced cell proliferation and enhanced apoptosis when used in combination with bortezomib and upregulated caspase-3 in these cells. CSL also inhibited invasion and migration of MM cells through the suppression of constitutive NF-κB activation and expression of downstream gene products such as CXCR4 and MMP-9. Moreover, CSL when administered either alone or in combination with bortezomib inhibited MM tumor growth and decreased serum IL-6 and TNF-α levels. Overall, our results suggest that CSL can abrogate MM growth both in vitro and in vivo and may serve as a useful pharmacological agent for the treatment of myeloma and other hematological malignancies.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang S Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jong H Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Radhamani Kannaiyan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nurulhuda Mustafa
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Kanjoormana A Manu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kodappully S Siveen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee J Chng
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore.,Medical Sciences Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
15
|
Zarrabi M, Afzal E, Asghari MH, Mohammad M, Es HA, Ebrahimi M. Inhibition of MEK/ERK signalling pathway promotes erythroid differentiation and reduces HSCs engraftment in ex vivo expanded haematopoietic stem cells. J Cell Mol Med 2018; 22:1464-1474. [PMID: 28994199 PMCID: PMC5824365 DOI: 10.1111/jcmm.13379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
The MEK/ERK pathway is found to be important in regulating different biological processes such as proliferation, differentiation and survival in a wide variety of cells. However, its role in self-renewal of haematopoietic stem cells is controversial and remains to be clarified. The aim of this study was to understand the role of MEK/ERK pathway in ex vivo expansion of mononuclear cells (MNCs) and purified CD34+ cells, both derived from human umbilical cord blood (hUCB). Based on our results, culturing the cells in the presence of an inhibitor of MEK/ERK pathway-PD0325901 (PD)-significantly reduces the expansion of CD34+ and CD34+ CD38- cells, while there is no change in the expression of stemness-related genes (HOXB4, BMI1). Moreover, in vivo analysis demonstrates that PD reduces engraftment capacity of ex vivo expanded CD34+ cells. Notably, when ERK pathway is blocked in UCB-MNCs, spontaneous erythroid differentiation is promoted, found in concomitant with increasing number of burst-forming unit-erythroid colony (BFU-E) as well as enhancement of erythroid glycophorin-A marker. These results are in total conformity with up-regulation of some erythroid enhancer genes (TAL1, GATA2, LMO2) and down-regulation of some erythroid repressor genes (JUN, PU1) as well. Taken together, our results support the idea that MEK/ERK pathway has a critical role in achieving the correct balance between self-renewal and differentiation of UCB cells. Also, we suggest that inhibition of ERK signalling could likely be a new key for erythroid induction of UCB-haematopoietic progenitor cells.
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Royan Stem Cell Technology Company, Cord Blood BankTehranIran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood BankTehranIran
| | - Mohammad Hossein Asghari
- Animal Core FacilityReproductive Biomedicine Research CenterRoyan Institute for Animal Biotechnology, ACECRTehranIran
| | - Monireh Mohammad
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Hamidreza Aboulkheyr Es
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| |
Collapse
|
16
|
Cytokines, hepatic cell profiling and cell interactions during bone marrow cell therapy for liver fibrosis in cholestatic mice. PLoS One 2017; 12:e0187970. [PMID: 29176797 PMCID: PMC5703547 DOI: 10.1371/journal.pone.0187970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Bone marrow cells (BMC) migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF) and reduction of pro-inflammatory cytokines (IL-17A and IL-6). Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration.
Collapse
|
17
|
Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis 2017; 20:443-462. [PMID: 28840415 DOI: 10.1007/s10456-017-9571-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in the bone marrow that leads to events such as bone destruction, anaemia and renal failure. Despite the several therapeutic options available, there is still no effective cure, and the standard survival is up to 4 years. The evolution from the asymptomatic stage of monoclonal gammopathy of undetermined significance to MM and the progression of the disease itself are related to cellular and molecular alterations in the bone marrow microenvironment, including the development of the vasculature. Post-natal vasculogenesis is characterized by the recruitment to the tumour vasculature of bone marrow progenitors, known as endothelial progenitor cells (EPCs), which incorporate newly forming blood vessels and differentiate into endothelial cells. Several processes related to EPCs, such as recruitment, mobilization, adhesion and differentiation, are tightly controlled by cells and molecules in the bone marrow microenvironment. In this review, the bone marrow microenvironment and the mechanisms associated to the development of the neovasculature promoted by EPCs are discussed in detail in both a non-pathological scenario and in MM. The latest developments in therapy targeting the vasculature and EPCs in MM are also highlighted. The identification and characterization of the pathways relevant to the complex setting of MM are of utter importance to identify not only biomarkers for an early diagnosis and disease progression monitoring, but also to reveal intervention targets for more effective therapy directed to cancer cells and the endothelial mediators relevant to neovasculature development.
Collapse
|
18
|
Bone Marrow Homing and Engraftment Defects of Human Hematopoietic Stem and Progenitor Cells. Mediterr J Hematol Infect Dis 2017; 9:e2017032. [PMID: 28512561 PMCID: PMC5419183 DOI: 10.4084/mjhid.2017.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022] Open
Abstract
Homing of hematopoietic stem cells (HSC) to their microenvironment niches in the bone marrow is a complex process with a critical role in repopulation of the bone marrow after transplantation. This active process allows for migration of HSC from peripheral blood and their successful anchoring in bone marrow before proliferation. The process of engraftment starts with the onset of proliferation and must, therefore, be functionally dissociated from the former process. In this overview, we analyze the characteristics of stem cells (SCs) with particular emphasis on their plasticity and ability to find their way home to the bone marrow. We also address the problem of graft failure which remains a significant contributor to morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). Within this context, we discuss non-malignant and malignant hematological disorders treated with reduced-intensity conditioning regimens or grafts from human leukocyte antigen (HLA)-mismatched donors.
Collapse
|
19
|
Loveland KL, Klein B, Pueschl D, Indumathy S, Bergmann M, Loveland BE, Hedger MP, Schuppe HC. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front Endocrinol (Lausanne) 2017; 8:307. [PMID: 29250030 PMCID: PMC5715375 DOI: 10.3389/fendo.2017.00307] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Germline development in vivo is dependent on the environment formed by somatic cells and the differentiation cues they provide; hence, the impact of local factors is highly relevant to the production of sperm. Knowledge of how somatic and germline cells interact is central to achieving biomedical goals relating to restoring, preserving or restricting fertility in humans. This review discusses the growing understanding of how cytokines contribute to testicular function and maintenance of male reproductive health, and to the pathologies associated with their abnormal activity in this organ. Here we consider both cytokines that signal through JAKs and are regulated by SOCS, and those utilizing other pathways, such as the MAP kinases and SMADs. The importance of cytokines in the establishment and maintenance of the testis as an immune-privilege site are described. Current research relating to the involvement of immune cells in testis development and disease is highlighted. This includes new data relating to testicular cancer which reinforce the understanding that tumorigenic cells shape their microenvironment through cytokine actions. Clinical implications in pathologies relating to local inflammation and to immunotherapies are discussed.
Collapse
Affiliation(s)
- Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- *Correspondence: Kate L. Loveland,
| | - Britta Klein
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Dana Pueschl
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Sivanjah Indumathy
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Mark P. Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
20
|
Bendall L. Extracellular molecules in hematopoietic stem cell mobilisation. Int J Hematol 2016; 105:118-128. [PMID: 27826715 DOI: 10.1007/s12185-016-2123-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells are a remarkable resource currently used for the life saving treatment, hematopoietic stem cell transplantation. Today, hematopoietic stem cells are primarily obtained from mobilized peripheral blood following treatment of the donor with the cytokine G-CSF, and in some settings, chemotherapy and/or the CXCR4 antagonist plerixafor. The collection of hematopoietic stem cells is contingent on adequate and timely mobilization of these cells into the peripheral blood. The use of healthy donors, particularly when unrelated to the patient, requires mobilization strategies be safe for the donor. While current mobilization strategies are largely successful, adequate mobilization fails to occur in a significant portion of donors. Understanding the mechanisms involved in the egress of stem cells from the bone marrow provides opportunities to further improve the process of collecting hematopoietic stem cells. Here, the role extracellular components of the blood and bone marrow in the mobilization process are discussed.
Collapse
Affiliation(s)
- Linda Bendall
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, Sydney, NSW, 2145, Australia.
| |
Collapse
|