1
|
Kodali M, Jankay T, Shetty AK, Reddy DS. Pathophysiological basis and promise of experimental therapies for Gulf War Illness, a chronic neuropsychiatric syndrome in veterans. Psychopharmacology (Berl) 2023; 240:673-697. [PMID: 36790443 DOI: 10.1007/s00213-023-06319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
This article describes the pathophysiology and potential treatments for Gulf War Illness (GWI), which is a chronic neuropsychiatric illness linked to a combination of chemical exposures experienced by service personnel during the first Gulf War in 1991. However, there is currently no effective treatment for veterans with GWI. The article focuses on the current status and efficacy of existing therapeutic interventions in preclinical models of GWI, as well as potential perspectives of promising therapies. GWI stems from changes in brain and peripheral systems in veterans, leading to neurocognitive deficits, as well as physiological and psychological effects resulting from multifaceted changes such as neuroinflammation, oxidative stress, and neuronal damage. Aging not only renders veterans more susceptible to GWI symptoms, but also attenuates their immune capabilities and response to therapies. A variety of experimental models are being used to investigate the pathophysiology and develop therapies that have the ability to alleviate devastating symptoms. Over two dozen therapeutic interventions targeting neuroinflammation, mitochondrial dysfunction, neuronal injury, and neurogenesis are being tested, including agents such as curcumin, curcumin nanoparticles, monosodium luminol, melatonin, resveratrol, fluoxetine, rolipram, oleoylethanolamide, ketamine, levetiracetam, nicotinamide riboside, minocycline, pyridazine derivatives, and neurosteroids. Preclinical outcomes show that some agents have promise, including curcumin, resveratrol, and ketamine, which are being tested in clinical trials in GWI veterans. Neuroprotectants and other compounds such as monosodium luminol, melatonin, levetiracetam, oleoylethanolamide, and nicotinamide riboside appear promising for future clinical trials. Neurosteroids have been shown to have neuroprotective and disease-modifying properties, which makes them a promising medicine for GWI. Therefore, accelerated clinical studies are urgently needed to evaluate and launch an effective therapy for veterans displaying GWI.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA
| | - Tanvi Jankay
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA.,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA. .,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
2
|
Reiter RJ, Sharma R, Cucielo MS, Tan DX, Rosales-Corral S, Gancitano G, de Almeida Chuffa LG. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell Mol Life Sci 2023; 80:88. [PMID: 36917314 PMCID: PMC11072793 DOI: 10.1007/s00018-023-04736-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
The brain lacks a classic lymphatic drainage system. How it is cleansed of damaged proteins, cellular debris, and molecular by-products has remained a mystery for decades. Recent discoveries have identified a hybrid system that includes cerebrospinal fluid (CSF)-filled perivascular spaces and classic lymph vessels in the dural covering of the brain and spinal cord that functionally cooperate to remove toxic and non-functional trash from the brain. These two components functioning together are referred to as the glymphatic system. We propose that the high levels of melatonin secreted by the pineal gland directly into the CSF play a role in flushing pathological molecules such as amyloid-β peptide (Aβ) from the brain via this network. Melatonin is a sleep-promoting agent, with waste clearance from the CNS being highest especially during slow wave sleep. Melatonin is also a potent and versatile antioxidant that prevents neural accumulation of oxidatively-damaged molecules which contribute to neurological decline. Due to its feedback actions on the suprachiasmatic nucleus, CSF melatonin rhythm functions to maintain optimal circadian rhythmicity, which is also critical for preserving neurocognitive health. Melatonin levels drop dramatically in the frail aged, potentially contributing to neurological failure and dementia. Melatonin supplementation in animal models of Alzheimer's disease (AD) defers Aβ accumulation, enhances its clearance from the CNS, and prolongs animal survival. In AD patients, preliminary data show that melatonin use reduces neurobehavioral signs such as sundowning. Finally, melatonin controls the mitotic activity of neural stem cells in the subventricular zone, suggesting its involvement in neuronal renewal.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Maira Smaniotto Cucielo
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-689, Brazil
| | | | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Giuseppe Gancitano
- 1st "Tuscania" Paratrooper Regiment, Italian Ministry of Defense, 57127, Leghorn, Italy
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-689, Brazil
| |
Collapse
|
3
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
4
|
Miranda-Riestra A, Estrada-Reyes R, Torres-Sanchez ED, Carreño-García S, Ortiz GG, Benítez-King G. Melatonin: A Neurotrophic Factor? Molecules 2022; 27:7742. [PMID: 36431847 PMCID: PMC9698771 DOI: 10.3390/molecules27227742] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Melatonin, N-acetyl-5-hydroxytryptamine, is a hormone that synchronizes the internal environment with the photoperiod. It is synthesized in the pineal gland and greatly depends on the endogenous circadian clock located in the suprachiasmatic nucleus and the retina's exposure to different light intensities. Among its most studied functions are the regulation of the waking-sleep rhythm and body temperature. Furthermore, melatonin has pleiotropic actions, which affect, for instance, the modulation of the immune and the cardiovascular systems, as well as the neuroprotection achieved by scavenging free radicals. Recent research has supported that melatonin contributes to neuronal survival, proliferation, and differentiation, such as dendritogenesis and axogenesis, and its processes are similar to those caused by Nerve Growth Factor, Brain-Derived Neurotrophic Factor, Neurotrophin-3, and Neurotrophin-4/5. Furthermore, this indolamine has apoptotic and anti-inflammatory actions in specific brain regions akin to those exerted by neurotrophic factors. This review presents evidence suggesting melatonin's role as a neurotrophic factor, describes the signaling pathways involved in these processes, and, lastly, highlights the therapeutic implications involved.
Collapse
Affiliation(s)
- Armida Miranda-Riestra
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| | - Erandis D. Torres-Sanchez
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Jalisco, Mexico
| | - Silvia Carreño-García
- Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| | - Genaro Gabriel Ortiz
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47810, Jalisco, Mexico
- Departamento de Disciplinas Filosóficas y Metodológicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan 14370, Mexico City, Mexico
| |
Collapse
|
5
|
Estrada-Reyes R, Quero-Chávez DB, Alarcón-Elizalde S, Cercós MG, Trueta C, Constantino-Jonapa LA, Oikawa-Sala J, Argueta J, Cruz-Garduño R, Dubocovich ML, Benítez-King GA. Antidepressant Low Doses of Ketamine and Melatonin in Combination Produce Additive Neurogenesis in Human Olfactory Neuronal Precursors. Molecules 2022; 27:molecules27175650. [PMID: 36080418 PMCID: PMC9458007 DOI: 10.3390/molecules27175650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 01/18/2023] Open
Abstract
Melatonin (MEL), an indolamine with diverse functions in the brain, has been shown to produce antidepressant-like effects, presumably through stimulating neurogenesis. We recently showed that the combination of MEL with ketamine (KET), an NMDA receptor antagonist, has robust antidepressant-like effects in mice, at doses that, by themselves, are non-effective and have no adverse effects. Here, we show that the KET/MEL combination increases neurogenesis in a clone derived from human olfactory neuronal precursors, a translational pre-clinical model for effects in the human CNS. Neurogenesis was assessed by the formation of cell clusters > 50 µm in diameter, positively stained for nestin, doublecortin, BrdU and Ki67, markers of progenitor cells, neurogenesis, and proliferation. FGF, EGF and BDNF growth factors increased the number of cell clusters in cultured, cloned ONPs. Similarly, KET or MEL increased the number of clusters in a dose-dependent manner. The KET/MEL combination further increased the formation of clusters, with a maximal effect obtained after a triple administration schedule. Our results show that the combination of KET/MEL, at subeffective doses that do not produce adverse effects, stimulate neurogenesis in human neuronal precursors. Moreover, the mechanism by which the combination elicits neurogenesis is meditated by melatonin receptors, CaM Kinase II and CaM antagonism. This could have clinical advantages for the fast treatment of depression.
Collapse
Affiliation(s)
- Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Daniel B. Quero-Chávez
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Salvador Alarcón-Elizalde
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Montserrat G. Cercós
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Luis A. Constantino-Jonapa
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Margarita L. Dubocovich
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), 955 Main Street, Buffalo, NY 14203, USA
| | - Gloria A. Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada Mexico-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
- Correspondence: or ; Tel.: +52-5541605097
| |
Collapse
|
6
|
Melatonin and the Programming of Stem Cells. Int J Mol Sci 2022; 23:ijms23041971. [PMID: 35216086 PMCID: PMC8879213 DOI: 10.3390/ijms23041971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin’s signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.
Collapse
|
7
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Onaolapo OJ, Onaolapo AY, Olowe OA, Udoh MO, Udoh DO, Nathaniel TI. Melatonin and Melatonergic Influence on Neuronal Transcription Factors: Implications for the Development of Novel Therapies for Neurodegenerative Disorders. Curr Neuropharmacol 2021; 18:563-577. [PMID: 31885352 PMCID: PMC7457420 DOI: 10.2174/1570159x18666191230114339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/04/2023] Open
Abstract
Melatonin is a multifunctional signalling molecule that is secreted by the mammalian pineal gland, and also found in a number of organisms including plants and bacteria. Research has continued to uncover an ever-increasing number of processes in which melatonin is known to play crucial roles in mammals. Amongst these functions is its contribution to cell multiplication, differentiation and survival in the brain. Experimental studies show that melatonin can achieve these functions by influencing transcription factors which control neuronal and glial gene expression. Since neuronal survival and differentiation are processes that are important determinants of the pathogenesis, course and outcome of neurodegenerative disorders; the known and potential influences of melatonin on neuronal and glial transcription factors are worthy of constant examination. In this review, relevant scientific literature on the role of melatonin in preventing or altering the course and outcome of neurodegenerative disorders, by focusing on melatonin's influence on transcription factors is examined. A number of transcription factors whose functions can be influenced by melatonin in neurodegenerative disease models have also been highlighted. Finally, the therapeutic implications of melatonin's influences have also been discussed and the potential limitations to its applications have been highlighted.
Collapse
Affiliation(s)
- Olakunle J. Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y. Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olugbenga A. Olowe
- Molecular Bacteriology and Immunology Unit, Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Mojisola O. Udoh
- Department of Pathology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - David O. Udoh
- Division of Neurological Surgery, Department of Surgery, University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | - Thomas I. Nathaniel
- University of South Carolina School of Medicine-Greenville, Greenville, South Carolina, 29605, United States
| |
Collapse
|
9
|
Leung JWH, Cheung KK, Ngai SPC, Tsang HWH, Lau BWM. Protective Effects of Melatonin on Neurogenesis Impairment in Neurological Disorders and Its Relevant Molecular Mechanisms. Int J Mol Sci 2020; 21:5645. [PMID: 32781737 PMCID: PMC7460604 DOI: 10.3390/ijms21165645] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 02/05/2023] Open
Abstract
Neurogenesis is the process by which functional new neurons are generated from the neural stem cells (NSCs) or neural progenitor cells (NPCs). Increasing lines of evidence show that neurogenesis impairment is involved in different neurological illnesses, including mood disorders, neurogenerative diseases, and central nervous system (CNS) injuries. Since reversing neurogenesis impairment was found to improve neurological outcomes in the pathological conditions, it is speculated that modulating neurogenesis is a potential therapeutic strategy for neurological diseases. Among different modulators of neurogenesis, melatonin is a particularly interesting one. In traditional understanding, melatonin controls the circadian rhythm and sleep-wake cycle, although it is not directly involved in the proliferation and survival of neurons. In the last decade, it was reported that melatonin plays an important role in the regulation of neurogenesis, and thus it may be a potential treatment for neurogenesis-related disorders. The present review aims to summarize and discuss the recent findings regarding the protective effects of melatonin on the neurogenesis impairment in different neurological conditions. We also address the molecular mechanisms involved in the actions of melatonin in neurogenesis modulation.
Collapse
Affiliation(s)
- Joseph Wai-Hin Leung
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| | - Shirley Pui-Ching Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| | - Hector Wing-Hong Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; (K.-K.C.); (S.P.-C.N.)
| |
Collapse
|