1
|
Lutz F, Han SY, Büyücek S, Möller K, Viehweger F, Schlichter R, Menz A, Luebke AM, Bawahab AA, Reiswich V, Kluth M, Hube-Magg C, Hinsch A, Weidemann S, Lennartz M, Dum D, Bernreuther C, Lebok P, Sauter G, Marx AH, Simon R, Krech T, Fraune C, Gorbokon N, Burandt E, Minner S, Steurer S, Clauditz TS, Jacobsen F. Expression of Trefoil Factor 1 (TFF1) in Cancer: A Tissue Microarray Study Involving 18,878 Tumors. Diagnostics (Basel) 2024; 14:2157. [PMID: 39410561 PMCID: PMC11475926 DOI: 10.3390/diagnostics14192157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Trefoil factor 1 (TFF1) plays a role in the mucus barrier. Methods: To evaluate the prevalence of TFF1 expression in cancer, a tissue microarray containing 18,878 samples from 149 tumor types and 608 samples of 76 normal tissue types was analyzed through immunohistochemistry (IHC). Results: TFF1 staining was detectable in 65 of 149 tumor categories. The highest rates of TFF1 positivity were found in mucinous ovarian carcinomas (76.2%), colorectal adenomas and adenocarcinomas (47.1-75%), breast neoplasms (up to 72.9%), bilio-pancreatic adenocarcinomas (42.1-62.5%), gastro-esophageal adenocarcinomas (40.4-50.0%), neuroendocrine neoplasms (up to 45.5%), cervical adenocarcinomas (39.1%), and urothelial neoplasms (up to 24.3%). High TFF1 expression was related to a low grade of malignancy in non-invasive urothelial carcinomas of the bladder (p = 0.0225), low grade of malignancy (p = 0.0003), estrogen and progesterone receptor expression (p < 0.0001), non-triple negativity (p = 0.0005) in invasive breast cancer of no special type, and right-sided tumor location (p = 0.0021) in colorectal adenocarcinomas. Conclusions: TFF1 IHC has only limited utility for the discrimination of different tumor entities given its expression in many tumor entities. The link between TFF1 expression and parameters of malignancy argues for a relevant biological role of TFF1 in cancer. TFF1 may represent a suitable therapeutic target due to its expression in only a few normal cell types.
Collapse
Affiliation(s)
- Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Soo-Young Han
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany;
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| |
Collapse
|
2
|
Park H. Unveiling Gene Regulatory Networks That Characterize Difference of Molecular Interplays Between Gastric Cancer Drug Sensitive and Resistance Cell Lines. J Comput Biol 2024; 31:257-274. [PMID: 38394313 DOI: 10.1089/cmb.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer is a leading cause of cancer-related deaths globally and chemotherapy is widely accepted as the standard treatment for gastric cancer. However, drug resistance in cancer cells poses a significant obstacle to the success of chemotherapy, limiting its effectiveness in treating gastric cancer. Although many studies have been conducted to unravel the mechanisms of acquired drug resistance, the existing studies were based on abnormalities of a single gene, that is, differential gene expression (DGE) analysis. Single gene-based analysis alone is insufficient to comprehensively understand the mechanisms of drug resistance in cancer cells, because the underlying processes of the mechanism involve perturbations of the molecular interactions. To uncover the mechanism of acquired gastric cancer drug resistance, we perform for identification of differentially regulated gene networks between drug-sensitive and drug-resistant cell lines. We develop a computational strategy for identifying phenotype-specific gene networks by extending the existing method, CIdrgn, that quantifies the dissimilarity of gene networks based on comprehensive information of network structure, that is, regulatory effect between genes, structure of edge, and expression levels of genes. To enhance the efficiency of identifying differentially regulated gene networks and improve the biological relevance of our findings, we integrate additional information and incorporate knowledge of network biology, such as hubness of genes and weighted adjacency matrices. The outstanding capabilities of the developed strategy are validated through Monte Carlo simulations. By using our strategy, we uncover gene regulatory networks that specifically capture the molecular interplays distinguishing drug-sensitive and drug-resistant profiles in gastric cancer. The reliability and significance of the identified drug-sensitive and resistance-specific gene networks, as well as their related markers, are verified through literature. Our analysis for differentially regulated gene network identification has the capacity to characterize the drug-sensitive and resistance-specific molecular interplays related to mechanisms of acquired drug resistance that cannot be revealed by analysis based solely on abnormalities of a single gene, for example, DGE analysis. Through our analysis and comprehensive examination of relevant literature, we suggest that targeting the suppressors of the identified drug-resistant markers, such as the Melanoma Antigen (MAGE) family, Trefoil Factor (TFF) family, and Ras-Associated Binding 25 (RAB25), while enhancing the expression of inducers of the drug sensitivity markers [e.g., Serum Amyloid A (SAA) family], could potentially reduce drug resistance and enhance the effectiveness of chemotherapy for gastric cancer. We expect that the developed strategy will serve as a useful tool for uncovering cancer-related phenotype-specific gene regulatory networks that provide essential clues for uncovering not only drug resistance mechanisms but also complex biological systems of cancer.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
3
|
Saha A, Gavert N, Brabletz T, Ben-Ze’ev A. Downregulation of the Tumor Suppressor TFF1 Is Required during Induction of Colon Cancer Progression by L1. Cancers (Basel) 2022; 14:cancers14184478. [PMID: 36139637 PMCID: PMC9497096 DOI: 10.3390/cancers14184478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Aberrant activation of Wnt/β-catenin signaling and the subsequent induction of downstream target genes is a hallmark of colorectal cancer (CRC) development. Previously, we found that overexpression of the immunoglobulin-like cell adhesion receptor L1CAM (L1), a target of the Wnt/β-catenin pathway, confers enhanced proliferation, motility, tumorigenesis, and liver metastasis in CRC cells. Transcriptomic and proteomic analyses revealed changes in both pro-tumorigenic and potential tumor-suppressor genes in L1-overexpressing CRC cells. We wished to identify such tumor suppressor/s, and found that trefoil family factor 1 (TFF1) was involved in L1-mediated CRC progression. TFF1 overexpression suppressed the growth, motility and tumorigenesis of L1-expressing CRC cells by inhibiting the NF-κB pathway. In human CRC tissue, TFF1-positive staining was evident in goblet cells of the normal mucosa, while in CRC tissue, TFF1 expression was lost in >50% of the tumor samples. Our results support a tumor-suppressor role of TFF1 in human CRC, and we suggest that TFF1 could be used for CRC detection and as a novel therapeutic target in L1-mediated CRC. Abstract The immunoglobulin family cell adhesion receptor L1 is induced in CRC cells at the invasive front of the tumor tissue, and confers enhanced proliferation, motility, tumorigenesis, and liver metastasis. To identify putative tumor suppressors whose expression is downregulated in L1-expressing CRC cells, we blocked the L1–ezrin–NF-κB signaling pathway and searched for genes induced under these conditions. We found that TFF1, a protein involved in protecting the mucus epithelial layer of the colon, is downregulated in L1-expressing cells and displays characteristics of a tumor suppressor. Overexpression of TFF1 in L1-transfected human CRC cells blocks the pro-tumorigenic and metastatic properties conferred by L1 by suppressing NF-κB signaling. Immunohistochemical analyses revealed that human CRC tissue samples often lose the expression of TFF1, while the normal mucosa displays TFF1 in goblet cells. Identifying TFF1 as a tumor suppressor in CRC cells could provide a novel marker for L1-mediated CRC development and a potential target for therapy.
Collapse
Affiliation(s)
- Arka Saha
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Feibiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Avri Ben-Ze’ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence:
| |
Collapse
|
4
|
Sugai T, Osakabe M, Eizuka M, Tanaka Y, Yamada S, Yanagawa N, Matsumoto T, Suzuki H. Genome-wide analysis of mRNA expression identified the involvement of trefoil factor 1 in the development of sessile serrated lesions. Pathol Res Pract 2022; 236:153987. [PMID: 35749918 DOI: 10.1016/j.prp.2022.153987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Precursor lesions that progress into colorectal cancer (CRC) could be largely classified into sessile serrated lesions (SSLs), traditional serrated adenoma (TSA), and tubular adenoma (TA). We aimed to determine whether high expression of trefoil factor 1 (TFF1) is closely associated with serrated lesions, particularly SSLs. The samples were divided into the first (12 SSLs, 5 TSAs, and 15 TAs) and second cohorts (15 SSLs, 9 TSAs, and 15 TAs). First, we investigated TFF1 expression in isolated gland samples using array-based and reverse-transcription PCR. Second, we performed immunohistochemical analysis of TFF1 expression in paraffin-embedded tissues obtained from SSL, TSA, TA, and hyperplastic polyp (HP) samples. In addition, we compared TFF1 mRNA levels between SSLs and HPs. TFF1 expression was significantly higher in SSLs than in TSA and TA in both cohorts. Additionally, immunohistochemical staining of TFF1 in the HP, SSL, TSA, and TA samples revealed significant differences in the immunohistochemical scores of TFF1 among the four types of lesions (higher expression in SSLs than in the other three lesions). Finally, there were significant differences in TFF1 mRNA expression levels between SSLs and HPs in paraffin-embedded tissues. However, there was considerable overlap in the immunohistochemical scores and expression levels of TFF1 transcripts between SSLs and HPs. The current findings may help elucidate the molecular mechanisms involved in serrated lesion development. In addition, we suggest that despite the limited practical application, upregulation of TFF1 transcripts may help differentiate SSLs from other lesions.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou 028-3695, Japan.
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou 028-3695, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou 028-3695, Japan
| | - Yoshihito Tanaka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou 028-3695, Japan
| | - Shun Yamada
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou 028-3695, Japan; Division of Gastroenterology, Department of Internal Medicine, 2-1-1, Shiwagun,Yahabachou 028-3695, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou 028-3695, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, 2-1-1, Shiwagun,Yahabachou 028-3695, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, School of Medicine, Cyuuouku, Sapporo 060-0061, Japan
| |
Collapse
|
5
|
Minegishi K, Dobashi Y, Tsubochi H, Hagiwara K, Ishibashi Y, Nomura S, Nakamura R, Ohmoto Y, Endo S. TFF-1 Functions to Suppress Multiple Phenotypes Associated with Lung Cancer Progression. Onco Targets Ther 2021; 14:4761-4777. [PMID: 34531663 PMCID: PMC8439977 DOI: 10.2147/ott.s322697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Trefoil Factor (TFF) is a member of a protein family comprised of three isoforms, of which TFF-1 exhibits antithetical functions; promotion or suppression of cell proliferation, survival and invasion, depending on the cancer type. However, the pathobiological function of TFF-1 in lung carcinoma has been still unclear. Methods We examined the expression and secretion of TFF-1 using cultured human lung carcinoma cells by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay and quantitative real-time PCR analyses. The effects of TFF-1 on various phenotypes were analyzed in two cell lines, including those transfected with cDNA encoding TFF-1. Cell proliferation and death were examined by hemocytometer cell counting and by colorimetric viability/cytotoxicity assay. Cell cycle profile, migration and invasion were also examined by flow cytometry, wound healing assay and Matrigel Transwell assay, respectively. The effect of TFF-1 overexpression was confirmed by additional transfection of TFF-1-specific siRNA. Results Endogenous TFF-1 protein expression and secretion into the media were observed exclusively in adenocarcinoma-derived cell lines. Forced overexpression of TFF-1 drove cell cycle transition, while the proliferation decreased by 19% to 25% due to increased cell death. This cell death was predominantly caused by apoptosis, as assessed by the activation of caspase 3/7. Cell migration was also suppressed by 71% to 82% in TFF-1-transfected cells. The suppressive effect of TFF-1 on proliferation and migration was restored by transfection of TFF-1 siRNA. Moreover, invasion was also suppressed to 77% to 83% in TFF-1-transfected cells. Conclusion These findings reveal that TFF-1 functions as a suppressor of cancer proliferation by induction of apoptosis, cell migration and invasion and thus may provide a synergistic target for potential treatment strategies for human lung carcinoma.
Collapse
Affiliation(s)
- Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoh Dobashi
- Department of Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Department of Pathology, School of Medicine, International University of Health and Welfare, Tochigi, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Koichi Hagiwara
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuko Ishibashi
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Breast Surgery, Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasukazu Ohmoto
- Tokushima University Industry-University R&D Startup Leading Institute, Tokushima, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
6
|
Lee DY, Song MY, Kim EH. Trefoil Factor 1 Suppresses Epithelial-mesenchymal Transition through Inhibition of TGF-beta Signaling in Gastric Cancer Cells. J Cancer Prev 2021; 26:137-144. [PMID: 34258252 PMCID: PMC8249209 DOI: 10.15430/jcp.2021.26.2.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Gastric cancer is a malignancy with high incidence and mortality worldwide. In gastric cancer, epithelial-mesenchymal transition (EMT) and metastasis further increase the mortality rate. Trefoil factor 1 (TFF1) has been reported as a protective factor in the gastric mucosa. In this study, TFF1 inhibited the migration and invasive capability of gastric cancer cells. Elevated TFF1 levels induced the expression of E-cadherin, the epithelial marker, and reduced the expression of N-cadherin, vimentin, Snail, Twist, Zinc finger E-box binding homeobox (ZEB) 1 and ZEB2, well-known repressors of E-cadherin expression. In addition, the expression of matrix metalloproteinase (MMP)-2, MMP-7 and MMP-9, which are major markers of cancer metastasis, was suppressed by TFF1. Upregulation of TFF1 inhibited TGF-β, a major signaling for EMT induction, and the phosphorylation of Smad2/3 activated by TGF-β in AGS cells. In conclusion, TFF1 inhibits EMT through suppression of TGF-β signaling in AGS cells, which might be used in therapeutic strategies for reducing metastatic potential and invasiveness of these cells.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| |
Collapse
|
7
|
Jankovic SM, Masic I. Evaluation of Preclinical and Clinical Studies Published in Medical Journals of Bosnia and Herzegovina: Methodology Issues. Acta Inform Med 2020; 28:4-11. [PMID: 32210508 PMCID: PMC7085328 DOI: 10.5455/aim.2020.28.4-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Results of preclinical and clinical studies in medicine could be trusted only if their design and statistical analysis were appropriate. AIM The aim of our study was to investigate whether preclinical and clinical studies published in medical journals of Bosnia and Herzegovina satisfy basic requirements for appropriate design and statistical interpretation of data. METHODS Preclinical and clinical studies published in medical journals of Bosnia and Herzegovina were retrieved from the PubMed database, and the sample for analysis was randomly chosen from the retrieved publications. Implementation rate of basic principles of experimental design (local control, randomization and replication) and rate of the most common errors in design of clinical/observational studies was established by careful reading of the sampled publications and their checking against predefined criteria. RESULTS Our study showed that only a minority of experimental preclinical studies had basic principles of design completely implemented (7%), while implementation rate of single aspects of appropriate experimental design varied from as low as 12% to as high as 77%. Only one of the clinical/observational studies had none of the errors searched for (2%), and specific errors rates varied from 10% to 89%. Average impact factor of the surveyed studies was around one, and average publication date recent, less than 5 years ago. CONCLUSION Prevalence of preclinical studies that did not follow completely basic principles of research design, and that of clinical/observational studies with errors are high, raising suspicion to validity of their results. If incorrect and not protected against bias, results of published studies may adversely influence future research.
Collapse
Affiliation(s)
| | - Izet Masic
- Academy of Medical Sciences of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
8
|
Yi J, Ren L, Li D, Wu J, Li W, Du G, Wang J. Trefoil factor 1 (TFF1) is a potential prognostic biomarker with functional significance in breast cancers. Biomed Pharmacother 2020; 124:109827. [PMID: 31986408 DOI: 10.1016/j.biopha.2020.109827] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/25/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women and the second leading cause of their cancer death. Establishing an accurate BC prognosis is very difficult because of its heterogeneity. Elevated TFF1 levels in serum were associated with development of BC, TFF1 expression was upregulated in BC compared to the healthy breast tissue. The aim of this study was to investigate the function of TFF1 in BCs, and to assess whether serum TFF1 could be used in formulating a prognosis for BC patients. In silico analyses were carried out to determine the expression of TFF1 mRNA in different types of BC and the association between TFF1 expression and survival of BC patients. Expression of TFF1 protein was checked in 52 paraffin-embedded tissues of BCs by immunochemistry, and serum concentration of TFF1 in 70 BC patients and 32 healthy controls was measured by ELISA. Functional activities of TFF1 in BC cells were determined by CCK-8 assay, colony formation, BrdU-DNA synthesis, and assays for migration and invasion. Results showed that expression of TFF1 mRNA was correlated with expression of biomarkers of luminal cancers including ESR1, GATA3, FOXA1, MYB and XBP1. In addition, patients with ER+BC had higher expression of TFF1 than those with ER- (p < 0.05). There was also lower expression of TFF1 in triple-negative breast cancer (TNBC) than in non-TNBC (p < 0.05), which corresponds with the level of serum TFF1 in TNBC patients, compared with non-TNBC patients (p < 0.001). Furthermore, expression of TFF1 was associated with tumor size (p = 0.002), nodal status (p < 0.001), histological grade (p < 0.001), ER status (p = 0.012), PR status (p < 0.001) and HER2 (p < 0.001), while serum TFF1 was only statistically different among BC with ER+, PR + and HER2+ (p = 0.04139, 0.0018, 0.0004). Elevated TFF1 expression correlated with increased overall survival of BC patients (p = 0.00068). Finally, TFF1 was found to inhibit the cell growth, colony formation, migration and invasion of BC cells in vitro. All these results suggest that expression of TFF1 was related to ER status of BC and that expression of TFF1 was lower in TNBC than in non-TNBC. TFF1 was found to inhibit proliferation, migration and invasion of BC cells in vitro. Expression of TFF1 was associated with clinical characters of patients with BC. Serum TFF1 could be used to predict prognosis of patients with BC, especially non-TNBC.
Collapse
Affiliation(s)
- Jie Yi
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Dandan Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jie Wu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
9
|
TREFOIL FACTOR FAMILY 1 EXPRESSION CORRELATES WITH CLINICAL OUTCOME IN PATIENTS WITH RETINOBLASTOMA. Retina 2018; 38:2422-2428. [DOI: 10.1097/iae.0000000000001881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Wang W, Li Z, Wang J, Du M, Li B, Zhang L, Li Q, Xu J, Wang L, Li F, Zhang D, Xu H, Yang L, Gong W, Qiang F, Zhang Z, Xu Z. A functional polymorphism in TFF1 promoter is associated with the risk and prognosis of gastric cancer. Int J Cancer 2017; 142:1805-1816. [PMID: 29210057 DOI: 10.1002/ijc.31197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/05/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
Trefoil Factor 1 (TFF1, also named pS2), which serves as the gastrointestinal mucosal protector, is known as gastric-specific tumor suppressor gene. However, the genetic variants of TFF1 are still not well studied. In our study, we aim to explore the effects of tagging single nucleotide polymorphisms (tagSNPs) of TFF1 on risk and prognosis of gastric cancer. Seven tagSNPs of TFF1 gene were first analyzed in the discovery set, which was consisted of 753 cases and 950 cancer-free controls. Then, the validation set (940 cases and 1,042 controls) was used for further evaluation. Moreover, we also tested the relation between these tagSNPs and prognosis of gastric cancer (GC). A series of experiments were performed to investigate the underlying mechanisms. We found that rs3761376 AA in the promoter region of TFF1, could reduce the expression of TFF1 by affecting the binding affinity of estrogen receptor 1 (ESR1, ERα), and thereby increased the risk of GC (1.29, 1.08-1.53). Moreover, the rs3761376 AA genotype was also found associated with worse prognosis among patients receiving 5-FU based chemotherapy after surgery (1.71, 1.18-2.48). Further functional assays demonstrated that TFF1 could increase the chemosensitivity of 5-FU by modulating NF-κB targeted genes. These results identified the effect of rs3761376 on TFF1 expression, which accounted for the correlation with susceptibility and prognosis of GC; and this genetic variant may be a potential biomarker to predict the risk and survival of GC.
Collapse
Affiliation(s)
- Weizhi Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiwei Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of General Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianghao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linjun Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weida Gong
- Department of General Surgery, Yixing Tumor Hospital, Yixing, China
| | - Fulin Qiang
- Core Laboratory, Nantong Tumor Hospital, Nantong, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Ludovini V, Bianconi F, Siggillino A, Piobbico D, Vannucci J, Metro G, Chiari R, Bellezza G, Puma F, Della Fazia MA, Servillo G, Crinò L. Gene identification for risk of relapse in stage I lung adenocarcinoma patients: a combined methodology of gene expression profiling and computational gene network analysis. Oncotarget 2017; 7:30561-74. [PMID: 27081700 PMCID: PMC5058701 DOI: 10.18632/oncotarget.8723] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Risk assessment and treatment choice remains a challenge in early non-small-cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR.From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS).Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy.
Collapse
Affiliation(s)
- Vienna Ludovini
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Fortunato Bianconi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jacopo Vannucci
- Department of Surgical and Biomedical Science, University of Perugia, Perugia, Italy
| | - Giulio Metro
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Rita Chiari
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Guido Bellezza
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, Perugia, Italy
| | - Francesco Puma
- Department of Surgical and Biomedical Science, University of Perugia, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lucio Crinò
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
12
|
Reduction of the tumorigenic potential of human retinoblastoma cell lines byTFF1overexpression involves p53/caspase signaling and miR-18a regulation. Int J Cancer 2017; 141:549-560. [DOI: 10.1002/ijc.30768] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 12/25/2022]
|
13
|
Xiao P, Ling H, Lan G, Liu J, Hu H, Yang R. Trefoil factors: Gastrointestinal-specific proteins associated with gastric cancer. Clin Chim Acta 2015; 450:127-34. [PMID: 26265233 DOI: 10.1016/j.cca.2015.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022]
Abstract
Trefoil factor family (TFF), composed of TFF1, TFF2, and TFF3, is a cluster of secreted peptides characterized by trefoil domain (s) and C-terminal dimerization domain. TFF1, a gastric tumor suppressor, is a single trefoil peptide originally detected in breast cancer cell lines but expressed mainly in the stomach; TFF2, a candidate of gastric cancer suppressor with two trefoil domains, is abundant in the stomach and duodenal Brunner's glands; and TFF3 is another single trefoil peptide expressed throughout the intestine which can promote the development of gastric carcinoma. According to multiple studies, TFFs play a regulatory function in the mammals' digestive system, namely in mucosal protection and epithelial cell reconstruction, tumor suppression or promotion, signal transduction and the regulation of proliferation and apoptosis. Action mechanisms of TFFs remain unresolved, but the recent demonstration of a GKN (gastrokine) 2-TFF1 heterodimer implicates structural and functional interplay with gastrokines. This review aims to encapsulate the structural and biological characteristics of TFF.
Collapse
Affiliation(s)
- Ping Xiao
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| | - Gang Lan
- Key Laboratory for Atherosclerology of Hunan Province, Cardiovascular Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Jiao Liu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Haobin Hu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Ruirui Yang
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| |
Collapse
|
14
|
Soutto M, Chen Z, Saleh MA, Katsha A, Zhu S, Zaika A, Belkhiri A, El-Rifai W. TFF1 activates p53 through down-regulation of miR-504 in gastric cancer. Oncotarget 2015; 5:5663-73. [PMID: 25015107 PMCID: PMC4170596 DOI: 10.18632/oncotarget.2156] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The expression of TFF1 is frequently down-regulated in human gastric cancer whereas its knockout leads to the development of gastric adenomas and carcinomas in mouse models. The molecular mechanisms underlying the TFF1 tumor suppressor functions remain unclear. In this study, we demonstrate, using colony formation assay and Annexin V staining, that reconstitution of TFF1 expression in gastric cancer cell models suppresses cell growth and promotes cell death. Furthermore, using a tumor xenograft mouse model of gastric cancer, we demonstrated that reconstitution of TFF1 suppresses tumor growth in vivo. The results from PG13-luciferase reporter assay and Western blot analysis indicated that TFF1 promotes the expression and transcription activity of the p53 protein. Further analysis using cycloheximide-based protein assay and quantitative real-time PCR data suggested that TFF1 does not interfere with p53 mRNA levels or protein stability. Alternatively, we found that the reconstitution of TFF1 down-regulates miR-504, a negative regulator of p53. Western blot analysis data demonstrated that miR-504 abrogates TFF1-induced p53 protein expression and activity. In conclusion, the in vitro and in vivo data demonstrate, for the first time, a novel mechanism by which the tumor suppressor functions of TFF1 involve activation of p53 through down-regulation of miR-504.
Collapse
Affiliation(s)
- Mohammed Soutto
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA. Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mohamed A Saleh
- Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ahmed Katsha
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shoumin Zhu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander Zaika
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wael El-Rifai
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA. Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA. Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Zhao J, Zhang SF, Shi Y, Ren LQ. Effects of urotensin II and its specific receptor antagonist urantide on rat vascular smooth muscle cells. Bosn J Basic Med Sci 2014; 13:78-83. [PMID: 23725502 DOI: 10.17305/bjbms.2013.2369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We investigated the effects of urantide, a receptor antagonist of urotensin II (U-II), on the expression of U-II and its receptor GPR14 in rat vascular smooth muscle cells. Vascular smooth muscle cells from rat thoracic aorta were cultured by explant method. Subjects in this experiment were divided into eight groups: normal control group (group C), U-II group (group M), positive control group (Flu group) and urantide-treated groups (10⁻¹⁰, 10⁻⁹, 10⁻⁸, 10⁻⁷ and 10⁻⁶ mol/L). Cultured vascular smooth muscle cells in vitro were studied by immunocytochemistry, biochemistry, and flow cytometry. U-II (10⁻⁸ mol/L) promoted the proliferation of vascular smooth muscle cells at each time point, influenced cell cycle, increased proliferation index and S-phase cell fraction, and dramatically promoted the expression of U-II and GPR14. In the concentration range from 10⁻¹⁰ to 10⁻⁶ mol/L, urantide dramatically inhibited the proliferation of vascular smooth muscle cells and the protein expression of U-II and GPR14, especially at a concentration of 10⁻⁶ mol/L. U-II, binding with its receptor GPR14, promotes vascular smooth muscle cells proliferation and migration, which can be inhibited by urantide. This study provides an evidence for understanding the effects of U-II and its receptor GPR14 on vascular smooth muscle cells.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Pathophysiology, Chengde Medical College, Chengde 067000, China
| | | | | | | |
Collapse
|
16
|
Huang YG, Li YF, Pan BL, Wang LP, Zhang Y, Lee WH, Zhang Y. Trefoil factor 1 gene alternations and expression in colorectal carcinomas. TUMORI JOURNAL 2013; 99:702-7. [DOI: 10.1177/030089161309900610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and backgroundAberrant expression of the trefoil factor family (TFF) has been recognized to be involved in the development and/or progression of various solid tumors. Increased trefoil factor 1 (TFF1) expression is found associated with tumor progression in some tumors, and TFF1 missense mutations have been detected in gastric cancer. The aim of the study was to analyze TFF1 alternations and expression in colorectal carcinoma and their correlation with cancer progression and pathological aspects.MethodsTFF1 mutations were detected in colorectal carcinomas by DNA sequencing. TFF1mRNA and protein levels in subsets of the primary tumors were determined using quantitative reverse transcription polymerase chain reaction and immunohistochemistry analyses. The serum level of TFF1 was also detected by enzyme-linked immunosorbent assay for patients with colorectal carcinoma.ResultsFive variants were detected in the 5'-untranslation region and intron 1 of TFF1. TFF1 expression was increased in colorectal carcinoma compared to paired distal colonic mucosa. Immunohistochemistry in primary colorectal carcinoma showed no significant differences in tumor TFF1 levels with respect to clinicopathological parameters such as the patient's sex, cancer differentiation, stage and lymph node metastasis. However, serum TFF1 levels were significantly elevated in patients with colorectal carcinoma compared to healthy individuals.ConclusionsThe results indicate that TFF1 missense mutations seem to be a rare event in colorectal carcinogenesis. Serum TFF1 may be a potential useful marker for patients with colorectal carcinoma.
Collapse
Affiliation(s)
- You-Guang Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology
- Tumor institue of Yunnan Province, The 3rd Affiliated Hospital of Kunming
| | - Yun-Feng Li
- Tumor institue of Yunnan Province, The 3rd Affiliated Hospital of Kunming
| | - Bao-Long Pan
- Department of Clinical Laboratory, The 1st Hospital of Yuxi, Yunnan Province
| | - Li-Ping Wang
- Department of Pathology, Yan-an Hospital of Kunming, Kunming, China
| | - Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology
| |
Collapse
|
17
|
Weise A, Dünker N. High trefoil factor 1 (TFF1) expression in human retinoblastoma cells correlates with low growth kinetics, increased cyclin-dependent kinase (CDK) inhibitor levels and a selective down-regulation of CDK6. Histochem Cell Biol 2012; 139:323-38. [PMID: 22983508 DOI: 10.1007/s00418-012-1028-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2012] [Indexed: 01/29/2023]
Abstract
Trefoil factor family (TFFs) peptides facilitate epithelial restitution, but also effect cell proliferation and apoptosis of normal and various cancer cell lines. In a recent study by our group, TFF2 expression was demonstrated in the murine retina, where it exhibits pro-proliferative and pro-apoptotic effects. In the present study, we investigated the expression and function of TFF peptides in eight human retinoblastoma cell lines. TFF1 was the only TFF peptide expressed at detectable levels in immunoblots of retinoblastoma cells. TFF1 expression levels were highly variable in different retinoblastoma cell lines and negatively correlated with cell growth curves. Recombinant human TFF1 had a negative effect on cell viability and caused a reduction in cell proliferation. Retinoblastoma cell lines with high TFF1 expression levels exhibited a selective down-regulation of cyclin-dependent kinase (CDK) 6, whereas CDK4 and CDK2 seem to be unaffected by TFF1 expression. In immunocytochemical studies, we observed a nuclear co-localization of TFF1 and CDK2 in Cajal bodies (CBs). In high TFF1 expressing human retinoblastoma cell lines CBs were smaller and higher in number compared to retinoblastoma lines with low TFF1 expression, indicating differences in cell cycle status between the different retinoblastoma cell lines. Our data further support the notion for a potential tumor suppressor function of TFF1. The nuclear localization of TFF1 in CBs--considered to play a role in cell cycle progression, potentially acting as a platform for CDK-cyclin function-offers a new impetus in the ongoing search for potential TFF1 interacting proteins.
Collapse
Affiliation(s)
- Andreas Weise
- Department of Neuroanatomy, Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | | |
Collapse
|