1
|
Shafiq A, Khan HM, Shahid M, Fatima N, Khan MA. Mutational Insights into GyrA and GyrB Genes in Mycobacterium tuberculosis: A Genetic Basis for Fluoroquinolone Resistance in Multidrug-resistant Tuberculosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:2651-2658. [DOI: 10.22207/jpam.18.4.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The global tuberculosis (TB) epidemic is becoming progressively more complex due to the increasing prevalence of multidrug-resistant TB (MDR-TB), particularly with resistance to fluoroquinolones (FQs). This study focuses on identifying genetic mutations in the gyrA and gyrB genes of Mycobacterium tuberculosis that drive FQ resistance. Sputum samples from suspected pulmonary TB patients were analyzed using PCR and sequencing to detect mutations within the quinolone resistance-determining regions (QRDR). The analysis revealed that mutations in gyrA, especially S95T, are prevalent and play a key role in FQ resistance. Additionally, less frequent mutations in gyrB, such as E501D and A533P, were also detected. These findings shed light on the molecular mechanisms contributing to FQ resistance in MDR-TB strains and underscore the need for enhanced diagnostic methods to identify resistance patterns more accurately. The insights gained from this research offer a foundation for improving TB treatment approaches and addressing the growing challenge of drug-resistant TB worldwide.
Collapse
|
2
|
Nowakowska J, Radomska D, Czarnomysy R, Marciniec K. Recent Development of Fluoroquinolone Derivatives as Anticancer Agents. Molecules 2024; 29:3538. [PMID: 39124943 PMCID: PMC11314068 DOI: 10.3390/molecules29153538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is the second leading cause of death in the world following cardiovascular disease. Its treatment, including radiation therapy and surgical removal of the tumour, is based on pharmacotherapy, which prompts a constant search for new and more effective drugs. There are high costs associated with designing, synthesising, and marketing new substances. Drug repositioning is an attractive solution. Fluoroquinolones make up a group of synthetic antibiotics with a broad spectrum of activity in bacterial diseases. Moreover, those compounds are of particular interest to researchers as a result of reports of their antiproliferative effects on the cells of the most lethal cancers. This article presents the current progress in the development of new fluoroquinolone derivatives with potential anticancer and cytotoxic activity, as well as structure-activity relationships, along with possible directions for further development.
Collapse
Affiliation(s)
- Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (R.C.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (R.C.)
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
3
|
Valencia J, Rubio V, Puerto G, Vasquez L, Bernal A, Mora JR, Cuesta SA, Paz JL, Insuasty B, Abonia R, Quiroga J, Insuasty A, Coneo A, Vidal O, Márquez E, Insuasty D. QSAR Studies, Molecular Docking, Molecular Dynamics, Synthesis, and Biological Evaluation of Novel Quinolinone-Based Thiosemicarbazones against Mycobacterium tuberculosis. Antibiotics (Basel) 2022; 12:antibiotics12010061. [PMID: 36671262 PMCID: PMC9854539 DOI: 10.3390/antibiotics12010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, a series of novel quinolinone-based thiosemicarbazones were designed in silico and their activities tested in vitro against Mycobacterium tuberculosis (M. tuberculosis). Quantitative structure-activity relationship (QSAR) studies were performed using quinolinone and thiosemicarbazide as pharmacophoric nuclei; the best model showed statistical parameters of R2 = 0.83; F = 47.96; s = 0.31, and was validated by several different methods. The van der Waals volume, electron density, and electronegativity model results suggested a pivotal role in antituberculosis (anti-TB) activity. Subsequently, from this model a new series of quinolinone-thiosemicarbazone 11a-e was designed and docked against two tuberculosis protein targets: enoyl-acyl carrier protein reductase (InhA) and decaprenylphosphoryl-β-D-ribose-2'-oxidase (DprE1). Molecular dynamics simulation over 200 ns showed a binding energy of -71.3 to -12.7 Kcal/mol, suggesting likely inhibition. In vitro antimycobacterial activity of quinolinone-thiosemicarbazone for 11a-e was evaluated against M. bovis, M. tuberculosis H37Rv, and six different strains of drug-resistant M. tuberculosis. All compounds exhibited good to excellent activity against all the families of M. tuberculosis. Several of the here synthesized compounds were more effective than the standard drugs (isoniazid, oxafloxacin), 11d and 11e being the most active products. The results suggest that these compounds may contribute as lead compounds in the research of new potential antimycobacterial agents.
Collapse
Affiliation(s)
- Jhesua Valencia
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Vivian Rubio
- Grupo de Micobacterias, Red TB Colombia, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Gloria Puerto
- Grupo de Micobacterias, Red TB Colombia, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Luisa Vasquez
- Grupo de Micobacterias, Red TB Colombia, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Anthony Bernal
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170157, Ecuador
| | - Sebastian A. Cuesta
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170157, Ecuador
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru
| | - Braulio Insuasty
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A., Cali 25360, Colombia
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A., Cali 25360, Colombia
| | - Jairo Quiroga
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A., Cali 25360, Colombia
| | - Alberto Insuasty
- Grupo de Investigación en Materiales Funcionales Nanoestructurados, Universidad CESMAG, Pasto 520003, Colombia
| | - Andres Coneo
- Medicine Department, Division of Health Sciences, Universidad del Norte, Barranquilla 081007, Colombia
| | - Oscar Vidal
- Medicine Department, Division of Health Sciences, Universidad del Norte, Barranquilla 081007, Colombia
| | - Edgar Márquez
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
- Correspondence: (E.M.); (D.I.)
| | - Daniel Insuasty
- Grupo de Investigación en Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia
- Correspondence: (E.M.); (D.I.)
| |
Collapse
|
4
|
Dube PS, Legoabe LJ, Beteck RM. Quinolone: a versatile therapeutic compound class. Mol Divers 2022:10.1007/s11030-022-10581-8. [PMID: 36527518 PMCID: PMC9758687 DOI: 10.1007/s11030-022-10581-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2022]
Abstract
The discovery of nalidixic acid is one pinnacle in medicinal chemistry, which opened a new area of research that has led to the discovery of several life-saving antimicrobial agents (generally referred to as fluoroquinolones) for over decades. Although fluoroquinolones are frequently encountered in the literature, the utility of quinolone compounds extends far beyond the applications of fluoroquinolones. Quinolone-based compounds have been reported for activity against malaria, tuberculosis, fungal and helminth infections, etc. Hence, the quinolone scaffold is of great interest to several researchers in diverse disciplines. This article highlights the versatility of the quinolone pharmacophore as a therapeutic agent beyond the fluoroquinolone profile.
Collapse
Affiliation(s)
- Phelelisiwe S. Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520 South Africa
| |
Collapse
|
5
|
Beteck RM, Jordaan A, Swart T, Van Der Kooy F, Warner DF, Hoppe HC, Legoabe LJ. 6-Nitro-1-benzylquinolones exhibiting specific antitubercular activity. Chem Biol Drug Des 2020; 96:1387-1394. [PMID: 32558257 DOI: 10.1111/cbdd.13747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/28/2022]
Abstract
In this study, we synthesized novel nitro quinolone-based compounds and tested them in vitro against a panel of Gram-positive and Gram-negative pathogens including Mycobacterium tuberculosis (MTB), Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumonia, Staphylococcus aureus, and Escherichia coli for antibacterial activities and also against HeLa cells for overt cytotoxicity. Compound 8e was identified as a non-toxic, potent hit with selective activity (MIC90 ˂ 0.24 µm) against MTB. 8e, however, showed no activity against DprE1 mutant, suggesting DprE1 as the likely target for this compound class.
Collapse
Affiliation(s)
- Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Tarryn Swart
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Frank Van Der Kooy
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Observatory, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Reddy MM, Sivaramakrishna A. A Facile L‐Proline Catalyzed One‐Pot Synthesis of Xanthene and Acridine Based Quinolones via Knoevenagel Condensation Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.201904921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Manne Madhava Reddy
- M. Madhava Reddy and Prof. Akella SivaramakrishnaDepartment of ChemistrySchool of Advanced SciencesVellore Institute of Technology (VIT) Vellore 632 014 Tamil Nadu India
| | - Akella Sivaramakrishna
- M. Madhava Reddy and Prof. Akella SivaramakrishnaDepartment of ChemistrySchool of Advanced SciencesVellore Institute of Technology (VIT) Vellore 632 014 Tamil Nadu India
| |
Collapse
|
7
|
Mohammed HH, Abdelhafez ESM, Abbas SH, Moustafa GA, Hauk G, Berger JM, Mitarai S, Arai M, Abd El-Baky RM, Abuo-Rahma GEDA. Design, synthesis and molecular docking of new N-4-piperazinyl ciprofloxacin-triazole hybrids with potential antimicrobial activity. Bioorg Chem 2019; 88:102952. [DOI: 10.1016/j.bioorg.2019.102952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
|
8
|
Beteck RM, Seldon R, Jordaan A, Warner DF, Hoppe HC, Laming D, Legoabe LJ, Khanye SD. Quinolone-isoniazid hybrids: synthesis and preliminary in vitro cytotoxicity and anti-tuberculosis evaluation. MEDCHEMCOMM 2019; 10:326-331. [PMID: 30881619 DOI: 10.1039/c8md00480c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Herein, we propose novel quinolones incorporating an INH moiety as potential drug templates against TB. The quinolone-based compounds bearing an INH moiety attached via a hydrazide-hydrazone bond were synthesised and evaluated against Mycobacterium tuberculosis H37Rv (MTB). The compounds were also evaluated for cytotoxicity against HeLa cell lines. These compounds showed significant activity (MIC90) against MTB in the range of 0.2-8 μM without any cytotoxic effects. Compounds 10 (MIC90; 0.9 μM), 11 (MIC90; 0.2 μM), 12 (MIC90; 0.8 μM) and compound 15 (MIC90; 0.8 μM), the most active compounds in this series, demonstrate activities on par with INH and superior to those reported for the fluoroquinolones. The SAR analysis suggests that the nature of substituents at positions -1 and -3 of the quinolone nucleus influences anti-MTB activity. Aqueous solubility evaluation and in vitro metabolic stability of compound 12 highlights favourable drug-like properties for this compound class.
Collapse
Affiliation(s)
- Richard M Beteck
- Faculty of Science , Department of Chemistry , Rhodes University , Grahamstown 6140 , South Africa .
| | - Ronnett Seldon
- Drug Discovery and Development Centre (H3-D) , Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit , Department of Pathology , University of Cape Town , Observatory , 7925 , South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit , Department of Pathology , University of Cape Town , Observatory , 7925 , South Africa.,Institute of Infectious Diseases and Molecular Medicine , University of Cape Town , Observatory , 7952 , South Africa.,Wellcome Centre for Clinical Infectious Diseases Research in Africa , University of Cape Town , Observatory , 7925 , South Africa
| | - Heinrich C Hoppe
- Faculty of Science , Department of Biochemistry and Microbiology , Rhodes University , Grahamstown 6140 , South Africa.,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown 6140 , South Africa
| | - Dustin Laming
- Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown 6140 , South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Science , North-West University , Potchefstroom 2520 , South Africa
| | - Setshaba D Khanye
- Faculty of Science , Department of Chemistry , Rhodes University , Grahamstown 6140 , South Africa . .,Centre for Chemico- and Biomedicinal Research , Rhodes University , Grahamstown 6140 , South Africa.,Faculty of Pharmacy , Rhodes University , Grahamstown 6140 , South Africa
| |
Collapse
|
9
|
Mukunzi D, Isanga J, Suryoprabowo S, Liu L, Kuang H. Rapid and sensitive immunoassays for the detection of lomefloxacin and related drug residues in bovine milk samples. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1306495] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Daniel Mukunzi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Joel Isanga
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Department of Biochemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Steven Suryoprabowo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
10
|
Mohammed HHH, Abd El-Hafeez AA, Abbas SH, Abdelhafez ESMN, Abuo-Rahma GEDA. New antiproliferative 7-(4-(N-substituted carbamoylmethyl)piperazin-1-yl) derivatives of ciprofloxacin induce cell cycle arrest at G2/M phase. Bioorg Med Chem 2016; 24:4636-4646. [PMID: 27555286 DOI: 10.1016/j.bmc.2016.07.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 12/11/2022]
Abstract
New N-4-piperazinyl derivatives of ciprofloxacin 2a-g were prepared and tested for their cytotoxic activity. The primary in vitro one dose anticancer assay experienced promising cytotoxic activity against different cancer cell lines especially non-small cell lung cancer. Independently, compounds 2b, 2d, 2f and 2g showed anticancer activity against human non-small cell lung cancer A549 cells (IC50=14.8, 24.8, 23.6 and 20.7μM, respectively) compared to the parent ciprofloxacin (IC50 >100μM) and doxorubicin as a positive control (IC50=1μM). The flow cytometric analysis for 2b showed dose dependent G2/M arrest in A549 cells. Also, 2b increased the expression of p53 and p21 and decreased the expression of cyclin B1 and Cdc2 proteins in A549 cells without any effect on the same proteins expression in WI-38 cells. Specific inhibition of p53 by pifithrin-α reversed the G2/M phase arrest induced by the 2b compound, suggesting contribution of p53 to increase. Taken together, 2b induced G2/M phase arrest via p53/p21 dependent pathway. The results indicate that 2b can be used as a lead compound for further development of new derivatives against non-small cell lung cancer.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | | |
Collapse
|