1
|
Ma C, Parikh A, Lighthall JG. Evaluation and Treatment Planning to Maximize Perioral, Submental, and Neck Aesthetics. Facial Plast Surg 2025. [PMID: 40306690 DOI: 10.1055/a-2597-6850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Aesthetic rejuvenation of the perioral, submental, and neck regions is a complex topic with multiple different treatment approaches. Aging changes in the skin, muscles, fat and soft tissue, and bones are driven by multiple internal and external factors. To obtain the best cosmetic outcome, a deep understanding of the perioral, submental, and neck region and proper patient evaluation are necessary. Here, we discuss the process of evaluating patients and planning treatment for perioral, submental, and neck rejuvenation.Patients presenting for evaluation of perioral, submental, and neck aging may have multiple aesthetic complaints. The approach to evaluating patients should be comprehensive and consistent. This involves careful history taking and consideration of medical co-morbidities, a thorough evaluation of the skin, tone, dynamic movement, and soft-tissue distribution of each subunit, and individualized pretreatment counseling to discuss risks and set expectations.An individualized plan may consist of either nonsurgical, surgical or a combination of approaches. Nonsurgical approaches excel at addressing aging skin, volume deficits, and overactivation of facial musculature. Surgical approaches address more severe manifestations of skin aging, uneven volume distribution, loss of contour in the jaw and neck, and bony deformities.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Otolaryngology-Head and Neck Surgery, Penn State Health Milton S. Hershey Medicine Center, Hershey, Pennsylvania
| | - Aniruddha Parikh
- Department of Otolaryngology-Head and Neck Surgery, Penn State Health Milton S. Hershey Medicine Center, Hershey, Pennsylvania
| | - Jessyka G Lighthall
- Department of Otolaryngology-Head and Neck Surgery, Penn State Health Milton S. Hershey Medicine Center, Hershey, Pennsylvania
| |
Collapse
|
2
|
Jesus A, Sousa E, Cidade H, Cruz MT, Almeida IF. How to fight acute sun damage? Current skin care strategies. Photochem Photobiol Sci 2024; 23:1915-1930. [PMID: 39342016 DOI: 10.1007/s43630-024-00641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Excessive exposure to sunlight can contribute for skin photo-damage, such as sunburn, dryness, wrinkles, hyperpigmentation, immunosuppressive events and skin sensitization reactions. The use of aftersun products is an effective strategy to reduce the visible signs and symptoms of acute photodamage in the skin. Aiming to unveil the active ingredients able to offset acute sun damage, this work focuses on the characterization of the aftersun products market. A total of 84 after-sun formulations from 41 international brands currently marketed in Portugal were analyzed concerning the composition described on the product label, identifying natural and synthetic/semi-synthetic ingredients with the ability to mitigate solar-induced effects. The majority of aftersun formulations contained ingredients derived from terrestrial and marine sources (> 80%). An in-depth examination of these compounds is also offered, revealing the top of the most used natural and synthetic/semi-synthetic ingredients present in aftersun products, as well as their mechanism of action. A critical appraisal of the scientific data was made aiming to highlight the scientific evidence of ingredients able to mitigate skin photodamage. Amino acids and peptides, and A. barbadensis extract were tested for their in vivo efficacy. Nevertheless, all the ingredients were analyzed with in vitro studies as preliminary screening before in vivo, ex vivo and/or clinical studies. In summary, this study provides an overview of the use of active ingredients in commercial aftersun products to understand better the benefits associated with their use in cosmetic formulations and identify opportunities for innovation.
Collapse
Affiliation(s)
- Ana Jesus
- Faculty of Pharmacy, UCIBIO-Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- CIIMAR-Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal.
| | - Isabel F Almeida
- Faculty of Pharmacy, UCIBIO-Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| |
Collapse
|
3
|
Xie Y, Yang A, Li N, Zheng H, Zhong Y, Jin Y, Li J, Ye R, Du L, Hu F. Lapagyl mitigates UV-induced inflammation and immunosuppression via Foxp3+ Tregs and CCL pathway: A single-cell transcriptomics study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155679. [PMID: 38701542 DOI: 10.1016/j.phymed.2024.155679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND As the largest organ of the body, the skin is constantly subjected to ultraviolet radiation (UVR), leading to inflammations and changes that mirror those seen in chronological aging. Although various small molecule drugs have been explored for treating skin photoaging, they typically suffer from low stability and a high incidence of adverse reactions. Consequently, the continued investigation of photoaging treatments, particularly those utilizing herbal products, remains a critical clinical endeavor. One such herbal product, Lapagyl, is derived from the bark of the lapacho tree and possesses antioxidant efficacies that could be beneficial in combating skin photoaging. PURPOSE This research aimed to evaluate the efficacy of the herbal product Lapagyl in combating UVR-induced skin photoaging. Additionally, it sought to unravel the mechanisms by which Lapagyl promotes the regeneration of the skin extracellular matrix. METHODS To investigate whether Lapagyl can alleviate skin aging and damage, a UVR radiation model was established using SKH-1 hairless mice. The dorsal skins of these mice were evaluated for wrinkle formation, texture, moisture, transepidermal water loss (TEWL), and elasticity. Pathological assessments were conducted to determine Lapagyl's efficacy. Additionally, single-cell sequencing and spectrum analysis were employed to elucidate the working mechanisms and primary components of Lapagyl in addressing UVR-induced skin aging and injury. RESULTS Lapagyl markedly reduced UVR-induced wrinkles, moisture loss, and elasticity decrease in SKH-1 mice. Single-cell sequencing demonstrated that Lapagyl corrected the imbalance in cell proportions caused by UVR, decreased UVR-induced ROS expression, and protected basal and spinous cells from skin damage. Additionally, Lapagyl effectively prevented the entry of inflammatory cells into the skin by reducing CCL8 expression and curtailed the UVR-induced formation of Foxp3+ regulatory T cells (Tregs) in the skin. Both pathological assessments and ex vivo skin model results demonstrated that Lapagyl effectively reduced UVR-induced damage to collagen and elastin. Spectrum analysis identified Salidroside as the primary compound remaining in the skin following Lapagyl treatment. Taken together, our study elucidated the skin protection mechanism of the herbal product Lapagyl against UVR damage at the cellular level, revealing its immunomodulatory effects, with salidroside identified as the primary active compound for skin. CONCLUSION Our study provided a thorough evaluation of Lapagyl's protective effects on skin against UVR damage, delving into the mechanisms at the cellular level. We discovered that Lapagyl mitigates skin inflammation and immunosuppression by regulating Foxp3+ Tregs and the CCL pathway. These insights indicate that Lapagyl has potential as a novel therapeutic option for addressing skin photoaging.
Collapse
Affiliation(s)
- Yicheng Xie
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China.
| | - Anqi Yang
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Nihong Li
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Huiwen Zheng
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Ye Zhong
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Yuting Jin
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Jiabin Li
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Rui Ye
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Le Du
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Fan Hu
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China.
| |
Collapse
|
4
|
Na GH, Kim S, Jung HM, Han SH, Han J, Koo YK. Skin Anti-Aging Efficacy of Enzyme-Treated Supercritical Caviar Extract: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 16:137. [PMID: 38201966 PMCID: PMC10780664 DOI: 10.3390/nu16010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Oxidative stress in the skin, induced by an unhealthy lifestyle and exposure to UVB radiation, leads to skin aging, including reduced elasticity, formation of wrinkles, moisture loss, and inflammation. In a previous study, we revealed the photoaging effects of enzyme-treated caviar extract (CV) by regulating collagen and hyaluronic acid synthase, melanogenesis, anti-oxidant mechanisms, and inflammation in a UVB irradiation-induced mice model. HPLC and MALDI-TOF were performed to determine the effect of enzyme treatment on the free amino acid contents and peptide molecular weight in supercritical caviar extract. As results of the analysis, CV is mainly composed of low-molecular-weight peptides consisting of leucine, tyrosine, and phenylalanine. Based on our in vitro and in vivo study, we conducted a clinical trial to assess the skin anti-aging efficacy of CV. In this randomized, double-blind, placebo-controlled trial, we measured indicators related to elasticity, wrinkles, and skin hydration at 4 and 8 weeks after consumption of CV. The subjects were categorized into caviar, combination, and placebo groups. After 4 weeks, skin hydration, dermal hydration, and transepidermal water loss all showed significant improvement. Furthermore, after 8 weeks, skin elasticity indexes-R2 (total elasticity), R5 (net elasticity), and R7 (ratio of elastic recovery to total deformation)-exhibited significant increases. Improvement in wrinkle indicators (Rmax, Ra, and Rz) and the whitening indicator melanin pigment was also observed. This is the first report showing that CV has significant skin anti-aging efficacy on human skin. In conclusion, our study suggests that CV can be used as skin anti-aging nutraceuticals through positive effects on skin condition in clinical trials.
Collapse
Affiliation(s)
- Gwi Hwan Na
- Department of R&I Center, COSMAXBIO, Seongnam 13486, Republic of Korea; (G.H.N.); (S.K.); (H.M.J.)
| | - SukJin Kim
- Department of R&I Center, COSMAXBIO, Seongnam 13486, Republic of Korea; (G.H.N.); (S.K.); (H.M.J.)
| | - Hyun Mook Jung
- Department of R&I Center, COSMAXBIO, Seongnam 13486, Republic of Korea; (G.H.N.); (S.K.); (H.M.J.)
| | - Sang Hun Han
- Almas Caviar, Hwaseoung-si 18553, Republic of Korea; (S.H.H.); (J.H.)
| | - Jehee Han
- Almas Caviar, Hwaseoung-si 18553, Republic of Korea; (S.H.H.); (J.H.)
| | - Yean Kyoung Koo
- Department of R&I Center, COSMAXBIO, Seongnam 13486, Republic of Korea; (G.H.N.); (S.K.); (H.M.J.)
| |
Collapse
|
5
|
Ajani AA, Olanrewaju FO, Enitan A, Fabusuyi O, Oripelaye M, Oninla OA, Olasode O. A Retrospective Review of Chronic Non-Communicable Dermatoses Among Older Adults at a Tertiary Healthcare Facility in Southwestern Nigeria. Dermatol Pract Concept 2023; 13:dpc.1304a262. [PMID: 37992368 PMCID: PMC10656169 DOI: 10.5826/dpc.1304a262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Aging is a ubiquitous human trait that predisposes older persons to chronic diseases. Compared with systemic non-communicable diseases, a significant gap exists in literature on the burden of non-communicable dermatoses (NCDs) amongst older adults particularly in low and middle-income countries. OBJECTIVES The aim of this study was to document the epidemiology and clinical pattern of non-communicable skin diseases among older adults at a tertiary healthcare facility in Southwestern Nigeria. METHODS We conducted a retrospective review of medical records of ambulant adults aged ≥60 years referred for dermatological care at a teaching hospital in ile-ife, South-Western Nigeria between February 2017 and February 2022. The frequency and pattern of NCDs were recorded for descriptive statistical analysis using SPSS 20 statistics software. The level of statistical significance was set at 0.05. RESULTS A total 553 medical records were reviewed with a female: male ratio of 1.3:1 The mean age of the study population was 68.85 ±7.87. Six out of every 10 patients (60.6%) had at least one chronic NCD. The incidence of chronic NCDs declined with increasing age. Chronic eczemas (22.4%), pigmentary dermatoses (9.4%) and skin tumors (8.7%) were the most frequent chronic non-communicable dermatoses recorded. Older males had a significantly higher incidence of chronic eczemas while chronic urticarias and skin tumors demonstrated significant female preponderance. CONCLUSIONS There is a high burden of chronic NCDs with significant gender disparities among older adults with skin problems in Nigeria. Pre-emptive planning and resource allocation towards specialist geriatric-dermatology services are needed to address skin-health needs of the growing geriatric population.
Collapse
Affiliation(s)
- Atinuke Arinola Ajani
- Department of Dermatology and Venereology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Ademola Enitan
- Department of Dermatology and Venereology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olufikemi Fabusuyi
- Department of Medicine, University of Medical Science Teaching Hospital Complex, Akure, Nigeria
| | - Mufutau Oripelaye
- Department of Dermatology and Venereology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Olayinka Olasode
- Department of Dermatology and Venereology, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
6
|
Zafar F, Asif HM, Shaheen G, Ghauri AO, Rajpoot SR, Tasleem MW, Shamim T, Hadi F, Noor R, Ali T, Gulzar MN, Nazar H. A comprehensive review on medicinal plants possessing antioxidant potential. Clin Exp Pharmacol Physiol 2023; 50:205-217. [PMID: 36479862 DOI: 10.1111/1440-1681.13743] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Many research studies have proposed that about two-thirds of the medicinal plant species of the world possess significant antioxidant potential. Antioxidants are very beneficial as they decrease oxidative stress (OS) in cells and hence play their role in management as well as treatment of numerous diseases like cancers, cardiovascular diseases, as well as many inflammatory illnesses. This review comprises the antioxidant potential of numerous parts of medicinal plants like leaves, stems, roots, seeds, fruits, as well as bark. Synthetic antioxidants named butylated hydroxyanisole (BHA) as well as butylated hydroxytoluene (BHT) are extensively employed in foods because of their role as food preservatives. Several natural antioxidants have better efficacy as compared to synthetic antioxidants. These medicinal plants include Geranium sanguineum L., Rheum ribes L., Diospyros abyssinica, Sargentodoxa cuneata Rehd. Et Wils, Pistacia lentiscus, Ficus microcarpa L. fil., Polyalthia cerasoides (Roxb.) Bedd, Cunn, Teucrium polium L., Crataeva nurvala Buch-Ham., Urtica dioica L., Dracocephalum moldavica L., Momordica Charantia L., Acacia auriculiformis A., Bidens pilosa Linn. The Lamiaceae species, Radiata, Leea indica, Pelargonium endlicherianum, Salvia officinalis L., and Uncaria tomentosa (Willd.) DC. The literature study disclosed more side effects of synthetic antioxidants (including food additives) in comparison with natural antioxidants and for prevention of many diseases.
Collapse
Affiliation(s)
- Farah Zafar
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Asif
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghazala Shaheen
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aymen Owais Ghauri
- Department of Eastern Medicine, Faculty of Allied Health Sciences, Jinnah University for Women, Karachi, Pakistan
| | - Sehrish Rana Rajpoot
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Tahira Shamim
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faheem Hadi
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Raessa Noor
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tanveer Ali
- Faculty of Eastern Medicine and Natural Sciences, Ziauddin University, Karachi, Pakistan
| | | | - Halima Nazar
- Department of Eastern Medicine, Jinnah University for Women, Karachi, Pakistan
| |
Collapse
|
7
|
Yoon JH, Kim MY, Cho JY. Apigenin: A Therapeutic Agent for Treatment of Skin Inflammatory Diseases and Cancer. Int J Mol Sci 2023; 24:ijms24021498. [PMID: 36675015 PMCID: PMC9861958 DOI: 10.3390/ijms24021498] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The skin is the main barrier between the body and the environment, protecting it from external oxidative stress induced by ultraviolet rays. It also prevents the entrance of infectious agents such as viruses, external antigens, allergens, and bacteria into our bodies. An overreaction to these agents causes severe skin diseases, including atopic dermatitis, pruritus, psoriasis, skin cancer, and vitiligo. Members of the flavonoid family include apigenin, quercetin, luteolin, and kaempferol. Of these, apigenin has been used as a dietary supplement due to its various biological activities and has been shown to reduce skin inflammation by downregulating various inflammatory markers and molecular targets. In this review, we deal with current knowledge about inflammatory reactions in the skin and the molecular mechanisms by which apigenin reduces skin inflammation.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
8
|
Human Placental Extract Delays In Vitro Cellular Senescence through the Activation of NRF2-Mediated Antioxidant Pathway. Antioxidants (Basel) 2022; 11:antiox11081545. [PMID: 36009264 PMCID: PMC9405396 DOI: 10.3390/antiox11081545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Senescent cells accumulate in the organs of aged animals and exacerbate organ dysfunction, resulting in age-related diseases. Oxidative stress accelerates cellular senescence. Placental extract, used in the alleviation of menopausal symptoms and promotion of wound healing and liver regeneration, reportedly protects against oxidative stress. In this study, we investigated the effects of human placental extract (HPE) on cellular senescence in normal human dermal fibroblasts (NHDFs) under oxidative stress conditions. We demonstrated that HPE delays the onset of cellular senescence. Next-generation sequencing analysis revealed that under oxidative stress conditions, HPE treatment enhanced the expression of the antioxidant genes CYGB, APOE, NQO1, and PTGS1. Further, HPE treatment under oxidative stress conditions increased the protein level of nuclear factor-erythroid factor 2-related factor 2 (NRF2)—a vital molecule in the antioxidant pathway—via post-transcriptional and/or post-translational regulations. These findings indicate that HPE treatment in NHDFs, under chronic oxidative stress, delays cellular senescence by mitigating oxidative stress via upregulation of the NRF2-mediated antioxidant pathway, and HPE treatment could potentially ameliorate skin-aging-associated damage, in vivo.
Collapse
|
9
|
Immunotherapy for the Treatment of Squamous Cell Carcinoma: Potential Benefits and Challenges. Int J Mol Sci 2022; 23:ijms23158530. [PMID: 35955666 PMCID: PMC9368833 DOI: 10.3390/ijms23158530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Melanoma and nonmelanoma skin cancers (NMSCs) are recognized as among the most common neoplasms, mostly in white people, with an increasing incidence rate. Among the NMSCs, squamous cell carcinoma (SCC) is the most prevalent malignancy known to affect people with a fair complexion who are exposed to extreme ultraviolet radiation (UVR), have a hereditary predisposition, or are immunosuppressed. There are several extrinsic and intrinsic determinants that contribute to the pathophysiology of the SCC. The therapeutic modalities depend on the SCC stages, from actinic keratosis to late-stage multiple metastases. Standard treatments include surgical excision, radiotherapy, and chemotherapy. As SCC represents a favorable tumor microenvironment with high tumor mutational burden, infiltration of immune cells, and expression of immune checkpoints, the SCC tumors are highly responsive to immunotherapies. Until now, there are three checkpoint inhibitors, cemiplimab, pembrolizumab, and nivolumab, that are approved for the treatment of advanced, recurrent, or metastatic SCC patients in the United States. Immunotherapy possesses significant therapeutic benefits for patients with metastatic or locally advanced tumors not eligible for surgery or radiotherapy to avoid the potential toxicity caused by the chemotherapies. Despite the high tolerability and efficiency, the existence of some challenges has been revealed such as, resistance to immunotherapy, less availability of the biomarkers, and difficulty in appropriate patient selection. This review aims to accumulate evidence regarding the genetic alterations related to SCC, the factors that contribute to the potential benefits of immunotherapy, and the challenges to follow this treatment regime.
Collapse
|
10
|
Human placental extract activates a wide array of gene expressions related to skin functions. Sci Rep 2022; 12:11031. [PMID: 35773304 PMCID: PMC9246867 DOI: 10.1038/s41598-022-15270-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
As skin aging is one of the most common dermatological concerns in recent years, scientific research has promoted treatment strategies aimed at preventing or reversing skin aging. Breakdown of the extracellular matrix (ECM), such as collagen and elastin fibers, in the skin results in decreased skin elasticity and tension. Cutaneous cells, especially fibroblasts in the dermis layer of the skin, mainly produce ECM proteins. Although clinical studies have demonstrated that placental extract (PE) has positive effects on skin health, the molecular mechanisms by which PE acts against skin aging are still largely unknown. In this study, we performed RNA-sequence analysis to investigate whether human PE (HPE) alters ECM-related gene expression in normal human dermal fibroblast (NHDF) cells. Gene ontology analysis showed that genes related to extracellular matrix/structure organization, such as COL1A1, COL5A3, ELN, and HAS2 were highly enriched, and most of these genes were upregulated. We further confirmed that the HPE increased the type I collagen, proteoglycan versican, elastin, and hyaluronan levels in NHDF cells. Our results demonstrate that HPE activates global ECM-related gene expression in NHDF cells, which accounts for the clinical evidence that the HPE affects skin aging.
Collapse
|
11
|
Mohd Zaid NA, Sekar M, Bonam SR, Gan SH, Lum PT, Begum MY, Mat Rani NNI, Vaijanathappa J, Wu YS, Subramaniyan V, Fuloria NK, Fuloria S. Promising Natural Products in New Drug Design, Development, and Therapy for Skin Disorders: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. Drug Des Devel Ther 2022; 16:23-66. [PMID: 35027818 PMCID: PMC8749048 DOI: 10.2147/dddt.s326332] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
The skin is the largest organ in the human body, composed of the epidermis and the dermis. It provides protection and acts as a barrier against external menaces like allergens, chemicals, systemic toxicity, and infectious organisms. Skin disorders like cancer, dermatitis, psoriasis, wounds, skin aging, acne, and skin infection occur frequently and can impact human life. According to a growing body of evidence, several studies have reported that natural products have the potential for treating skin disorders. Building on this information, this review provides brief information about the action of the most important in vitro and in vivo research on the use of ten selected natural products in inflammatory, neoplastic, and infectious skin disorders and their mechanisms that have been reported to date. The related studies and articles were searched from several databases, including PubMed, Google, Google Scholar, and ScienceDirect. Ten natural products that have been reported widely on skin disorders were reviewed in this study, with most showing anti-inflammatory, antioxidant, anti-microbial, and anti-cancer effects as the main therapeutic actions. Overall, most of the natural products reported in this review can reduce and suppress inflammatory markers, like tumor necrosis factor-alpha (TNF-α), scavenge reactive oxygen species (ROS), induce cancer cell death through apoptosis, and prevent bacteria, fungal, and virus infections indicating their potentials. This review also highlighted the challenges and opportunities of natural products in transdermal/topical delivery systems and their safety considerations for skin disorders. Our findings indicated that natural products might be a low-cost, well-tolerated, and safe treatment for skin diseases. However, a larger number of clinical trials are required to validate these findings. Natural products in combination with modern drugs, as well as the development of novel delivery mechanisms, represent a very promising area for future drug discovery of these natural leads against skin disorders.
Collapse
Affiliation(s)
- Nurul Amirah Mohd Zaid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, 47500, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Jaishree Vaijanathappa
- Faculty of Life Sciences, JSS Academy of Higher Education and Research Mauritius, Vacoas-Phoenix, Mauritius
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | | | | | | |
Collapse
|
12
|
Formula Development of Red Palm (Elaeis guineensis) Fruit Extract Loaded with Solid Lipid Nanoparticles Containing Creams and Its Anti-Aging Efficacy in Healthy Volunteers. COSMETICS 2021. [DOI: 10.3390/cosmetics9010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Palm fruits (Elaeis guineensis) comprise antioxidants that can be used as skin care agents. This study developed a cosmeceutical cream containing E. guineensis extract, loaded with solid lipid nanoparticles (SLNs), and assessed its efficacy on female volunteers. The E. guineensis extract exhibited a good antioxidant activity with high levels of vitamin E, β-carotene, and palmitic acid. Day and night creams containing E. guineensis fruit extract, loaded with SLNs, were formulated and exhibited acceptable physical characteristics and good stability. Subsequently, their clinical efficacy and safety were evaluated on female volunteers. Both creams were non-irritating and had good cutaneous compatibility. Skin hydration, transepidermal water loss (TEWL), skin elasticity, melanin index, and skin texture were measured before and 30 min after the first application, as well as after 7, 14, and 30 days of daily application. A satisfactory survey was implemented using a questionnaire, and volunteer satisfaction scores were high for the product’s performance. Overall, the results showed that skin hydration, TEWL, cutaneous elasticity, and melanin index were improved, compared to the baseline data, after 30 days. Thus, the formulated facial day and night creams made the skin moist, reduced wrinkles, increased elasticity, and cleared the skin to the consumers’ satisfaction.
Collapse
|
13
|
Polat S, Trif M, Rusu A, Šimat V, Čagalj M, Alak G, Meral R, Özogul Y, Polat A, Özogul F. Recent advances in industrial applications of seaweeds. Crit Rev Food Sci Nutr 2021:1-30. [PMID: 34875930 DOI: 10.1080/10408398.2021.2010646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.
Collapse
Affiliation(s)
- Sevim Polat
- Department of Marine Biology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Rusu
- CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Raciye Meral
- Department of Food Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Abdurahman Polat
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
14
|
Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M. Inflammatory Molecules Associated with Ultraviolet Radiation-Mediated Skin Aging. Int J Mol Sci 2021; 22:ijms22083974. [PMID: 33921444 PMCID: PMC8069861 DOI: 10.3390/ijms22083974] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Skin is the largest and most complex organ in the human body comprised of multiple layers with different types of cells. Different kinds of environmental stressors, for example, ultraviolet radiation (UVR), temperature, air pollutants, smoking, and diet, accelerate skin aging by stimulating inflammatory molecules. Skin aging caused by UVR is characterized by loss of elasticity, fine lines, wrinkles, reduced epidermal and dermal components, increased epidermal permeability, delayed wound healing, and approximately 90% of skin aging. These external factors can cause aging through reactive oxygen species (ROS)-mediated inflammation, as well as aged skin is a source of circulatory inflammatory molecules which accelerate skin aging and cause aging-related diseases. This review article focuses on the inflammatory pathways associated with UVR-mediated skin aging.
Collapse
|
15
|
Kim AJ, Park JE, Cho YH, Lim DS, Lee JS. Effect of 7-Methylsulfinylheptyl Isothiocyanate on the Inhibition of Melanogenesis in B16-F1 Cells. Life (Basel) 2021; 11:life11020162. [PMID: 33672463 PMCID: PMC7923422 DOI: 10.3390/life11020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Skin aging, characterized by hyperpigmentation, inflammation, wrinkles, and skin cancer, is influenced by intrinsic and extrinsic factors with synergistic effects. Autophagy maintains the homeostatic balance between the degradation, synthesis, and recycling of cellular proteins and organelles, and plays important roles in several cellular and biological processes, including aging. The compound 7-methylsulfinylheptyl isothiocyanate (7-MSI) is a sulfur-containing phytochemical produced by various plants, particularly cruciferous vegetables, with reported anti-inflammatory properties and a role in pathogen defense; however, its effects on skin whitening have not been studied in detail. The purpose of this study was to observe the effects of 7-MSI on skin whitening and autophagy in cultured murine melanoma (B16-F1) cells. Western blotting was used to evaluate the impact of 7-MSI on melanogenesis-, tyrosinase-, and autophagy-associated proteins. The levels of the melanogenesis-associated protein’s microphthalmia-associated transcription factor (MITF) and tyrosinase and tyrosinase-related protein-1 were decreased by treatment with 7-MSI under melanogenesis induction. Melanin synthesis also decreased by approximately 63% after treatment with 7-MSI for 73 h, compared with that non-treated controls. In addition, autophagosome formation and the expression levels of the autophagy-related proteins mTOR, p-mTOR, Beclin-1, Atg12, and LC3 were higher in 7-MSI-treated B16-F1 cells than in non-treated cells. These results indicate that 7-MSI can inhibit melanin synthesis in B16-F1 cells by suppressing melanogenesis and autophagy activation and thus can potentially be used as a novel multifunctional cosmetic agent.
Collapse
Affiliation(s)
- A-Ju Kim
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Gwangju 61452, Korea; (A.-J.K.); (J.E.P.); (Y.H.C.); (D.S.L.)
| | - Jung Eun Park
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Gwangju 61452, Korea; (A.-J.K.); (J.E.P.); (Y.H.C.); (D.S.L.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Yeong Hee Cho
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Gwangju 61452, Korea; (A.-J.K.); (J.E.P.); (Y.H.C.); (D.S.L.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Do Sung Lim
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Gwangju 61452, Korea; (A.-J.K.); (J.E.P.); (Y.H.C.); (D.S.L.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Jung Sup Lee
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Gwangju 61452, Korea; (A.-J.K.); (J.E.P.); (Y.H.C.); (D.S.L.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-6665
| |
Collapse
|