1
|
Patel AH, Sharma HP, Vaishali. Physiological functions, pharmacological aspects and nutritional importance of green tomato- a future food. Crit Rev Food Sci Nutr 2023; 64:9711-9739. [PMID: 37267154 DOI: 10.1080/10408398.2023.2212766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Green tomatoes contain significant levels of steroidal glycoalkoids (SGA) such as α-tomatine and green pigment chlorophyll. Tomatine is an admixture of two glycoalkoids; alpha tomatine and dehydrotomatine reported various health beneficial biological activities. Moreover, a hydrolyzed product of tomatine also contributes to age-related atrophy, and muscle weakness and helps the elderly recover from illness and injuries related to age. However, there is a lack of evidence regarding the absorption of tomatine in the human body concerning proposed biological activity, which should be an area of interest in the future. Once, the absorption study is established compounds concentrated in green tomatoes are potentially involved as protective compounds for several diseases and also used for functional food. To facilitate the use of green tomatoes in food processing, this comprehensive review provides data on the nutritional value of green tomatoes, with emphasis on the evolution of the physiological chemistry, analytical, medicinal, and pharmacological effects of the α-tomatine and chlorophyll in an experimental model. The broad aim of this review is to evaluate the health benefits of green tomatoes in addition to their nutritional value and to study the several features of the role of α-tomatine and chlorophyll in human health.
Collapse
Affiliation(s)
- Arpit H Patel
- College of Food Processing Technology and Bio-energy, Anand Agricultural University, Anand, India
| | - Harsh P Sharma
- Food Science and Technology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Vaishali
- Food Engineerng, National PG College, Gorakhpur, India
| |
Collapse
|
2
|
Pereira N, Farrokhi M, Vida M, Lageiro M, Ramos AC, Vieira MC, Alegria C, Gonçalves EM, Abreu M. Valorisation of Wasted Immature Tomato to Innovative Fermented Functional Foods. Foods 2023; 12:foods12071532. [PMID: 37048352 PMCID: PMC10094284 DOI: 10.3390/foods12071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
In this study, the lactic fermentation of immature tomatoes as a tool for food ingredient production was evaluated as a circular economy-oriented alternative for valorising industrial tomatoes that are unsuitable for processing and which have wasted away in large quantities in the field. Two lactic acid bacteria (LAB) were assessed as starter cultures in an immature tomato pulp fermentation to produce functional food ingredients with probiotic potential. The first trial evaluated the probiotic character of Lactiplantibacillus plantarum (LAB97, isolated from immature tomato microbiota) and Weissella paramesenteroides (C1090, from the INIAV collection) through in vitro gastrointestinal digestion simulation. The results showed that LAB97 and C1090 met the probiotic potential viability criterion by maintaining 6 log10 CFU/mL counts after in vitro simulation. The second trial assessed the LAB starters’ fermentative ability. Partially decontaminated (110 °C/2 min) immature tomato pulp was used to prepare the individually inoculated samples (Id: LAB97 and C1090). Non-inoculated samples, both with and without thermal treatment (Id: CTR-TT and CTR-NTT, respectively), were prepared as the controls. Fermentation was undertaken (25 °C, 100 rpm) for 14 days. Throughout storage (0, 24, 48, 72 h, 7, and 14 days), all the samples were tested for LAB and Y&M counts, titratable acidity (TA), solid soluble content (SSC), total phenolic content (TPC), antioxidant capacity (AOx), as well as for organic acids and phenolic profiles, and CIELab colour and sensory evaluation (14th day). The LAB growth reached ca. 9 log10 CFU/mL for all samples after 72 h. The LAB97 samples had an earlier and higher acidification rate than the remaining ones, and they were highly correlated to lactic acid increments. The inoculated samples showed a faster and higher decrease rate in their SSC levels when compared to the controls. A nearly two-fold increase (p < 0.05) during the fermentation, over time, was observed in all samples’ AOx and TPC (p < 0.05, r = 0.93; similar pattern). The LAB97 samples obtained the best sensory acceptance for flavour and overall appreciation scores when compared to the others. In conclusion, the L. plantarum LAB97 starter culture was selected as a novel probiotic candidate to obtain a potential probiotic ingredient from immature tomato fruits.
Collapse
Affiliation(s)
- Nelson Pereira
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
| | - Mahsa Farrokhi
- Instituto Superior de Engenharia, Universidade do Algarve, 8005-139 Faro, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global and Sustainability Institute, Faculty of Science and Technology, Universidade do Algarve, Campus de Gambelas, 8005-310 Faro, Portugal
| | - Manuela Vida
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
| | - Manuela Lageiro
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, FCT-UNL, 2829-516 Caparica, Portugal
| | - Ana Cristina Ramos
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, FCT-UNL, 2829-516 Caparica, Portugal
| | - Margarida C. Vieira
- Instituto Superior de Engenharia, Universidade do Algarve, 8005-139 Faro, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global and Sustainability Institute, Faculty of Science and Technology, Universidade do Algarve, Campus de Gambelas, 8005-310 Faro, Portugal
| | - Carla Alegria
- cE3c—Centre for Ecology, Evolution and Environmental Changes, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, FCT-UNL, 2829-516 Caparica, Portugal
| | - Marta Abreu
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| |
Collapse
|
3
|
Simões S, Santos R, Bento-Silva A, Santos MV, Mota M, Duarte N, Sousa I, Raymundo A, Prista C. Improving nutritional quality of unripe tomato through fermentation by a consortium of yeast and lactic acid bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1422-1429. [PMID: 34388265 DOI: 10.1002/jsfa.11476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Portugal is one of the main producers of industrial tomato and tomato paste, an important intermediate ingredient used in many added-value foods. The tomato processing industry rigorously selects the fruits by colour during mechanical harvest, picking only completely ripe fruits to produce high quality tomato paste. The latest available data shows that about 1.12 × 108 kg yr-1 of non-red/not-ripe tomatoes are left in the field, representing a major side product/field residue with great impact on the environment and for tomato producers. RESULTS The aim of the work was to use fermentation by a consortium of yeast and lactic acid bacteria to improve the nutritional quality of unripe tomato paste. A consortium of Lactobacillus plantarum, Leuconostoc mesenteroides and Kluyveromyces marxianus was selected, producing an acidic paste with olive-like flavours after 4 days of fermentation. Nutritional characterization revealed a significant improvement (P < 0.05) in the content of ascorbic acid and antioxidant potential. In addition, ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis showed that the fermented green tomato paste content in glycoalkaloid α-tomatine represents no hazard to the consumer. CONCLUSION Therefore, the obtained fermented green tomato paste can be further used to produce new food products, such as salad dressings and sauces. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Simões
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Rafaela Santos
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | | | - Marisa V Santos
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Mariana Mota
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Noélia Duarte
- Research Institute for Medicines (iMED.Ulisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Isabel Sousa
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Anabela Raymundo
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Catarina Prista
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Selection of Autochthonous LAB Strains of Unripe Green Tomato towards the Production of Highly Nutritious Lacto-Fermented Ingredients. Foods 2021; 10:foods10122916. [PMID: 34945467 PMCID: PMC8700740 DOI: 10.3390/foods10122916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Lactic fermentation of unripe green tomatoes as a tool to produce food ingredients is a viable alternative for adding value to industrial tomatoes unsuitable for processing and left in large quantities in the fields. Fermentation using starter cultures isolated from the fruit (plant-matrix adapted) can have advantages over allochthonous strains in obtaining fermented products with sensory acceptability and potentially probiotic characteristics. This paper details the characterisation of the unripe green tomato lactic microbiota to screen LAB strains for use as starter cultures in fermentation processes, along with LAB strains available from INIAV's collection. Morphological, biochemical (API system), and genomic (16S rDNA gene sequencing) identification showed that the dominant LAB genera in unripe green tomato are Lactiplantibacillus, Leuconostoc, and Weissella. Among nine tested strains, autochthonous Lactiplantibacillus plantarum and allochthonous Weissella paramesenteroides showed tolerance to added solanine (200 ppm) and the best in vitro probiotic potential. The results indicate that the two LAB strains are promising candidates for manufacturing probiotic fermented foods from unripe green tomatoes.
Collapse
|