Yashin KS, Shcheslavskiy VI, Medyanik IA, Kravets LY, Shirmanova MV. Towards Optical Biopsy in Glioma Surgery.
Int J Mol Sci 2025;
26:4554. [PMID:
40429698 PMCID:
PMC12110844 DOI:
10.3390/ijms26104554]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Currently, the focus of intraoperative imaging in brain tumor surgery is beginning to shift to optical methods such as optical coherence tomography (OCT), Raman spectroscopy, confocal laser endomicroscopy (CLE), and fluorescence lifetime imaging (FLIM). Optical imaging technologies provide in vivo and real-time high-resolution images of tissues. "Optical biopsy" can be considered as an alternative to traditional approaches for intraoperative histopathologic consultation. Intraoperative optical imaging can help to achieve precise intraoperative identification of tumor infiltrations within the surrounding brain parenchyma. Therefore, it can be considered as a complement to existing approaches based on wide-field imaging modalities such as MRI, US, or 5-ALA fluorescence. A promising future direction for intraoperative guidance during brain tumor surgery or stereotactic biopsy lies in the integration of optical imaging with machine learning techniques, enabling automated differentiation between tumor tissue and healthy brain parenchyma. We present this review to increase knowledge and form critical opinions in the field of using optical imaging in brain tumor surgery.
Collapse