1
|
Wu S, Chen J. Is age-related myelinodegenerative change an initial risk factor of neurodegenerative diseases? Neural Regen Res 2026; 21:648-658. [PMID: 40326982 DOI: 10.4103/nrr.nrr-d-24-00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/25/2024] [Indexed: 05/07/2025] Open
Abstract
Myelination, the continuous ensheathment of neuronal axons, is a lifelong process in the nervous system that is essential for the precise, temporospatial conduction of action potentials between neurons. Myelin also provides intercellular metabolic support to axons. Even minor disruptions in the integrity of myelin can impair neural performance and increase susceptibility to neurological diseases. In fact, myelin degeneration is a well-known neuropathological condition that is associated with normal aging and several neurodegenerative diseases, including multiple sclerosis and Alzheimer's disease. In the central nervous system, compact myelin sheaths are formed by fully mature oligodendrocytes. However, the entire oligodendrocyte lineage is susceptible to changes in the biological microenvironment and other risk factors that arise as the brain ages. In addition to their well-known role in action potential propagation, oligodendrocytes also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes. Therefore, myelin degeneration in the aging central nervous system is a significant contributor to the development of neurodegenerative diseases. Interventions that mitigate age-related myelin degeneration can improve neurological function in aging individuals. In this review, we investigate the changes in myelin that are associated with aging and their underlying mechanisms. We also discuss recent advances in understanding how myelin degeneration in the aging brain contributes to neurodegenerative diseases and explore the factors that can prevent, slow down, or even reverse age-related myelin degeneration. Future research will enhance our understanding of how reducing age-related myelin degeneration can be used as a therapeutic target for delaying or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuangchan Wu
- Sanhang Institute for Brain Science and Technology (SiBST), School of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, Guangdong Province, China
| | - Jun Chen
- Sanhang Institute for Brain Science and Technology (SiBST), School of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Vanderlip CR, Asch PA, Reynolds JH, Glavis-Bloom C. Domain-Specific Cognitive Impairment Reflects Prefrontal Dysfunction in Aged Common Marmosets. eNeuro 2023; 10:ENEURO.0187-23.2023. [PMID: 37553239 PMCID: PMC10444537 DOI: 10.1523/eneuro.0187-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Age-related cognitive impairment is not expressed uniformly across cognitive domains. Cognitive functions that rely on brain areas that undergo substantial neuroanatomical changes with age often show age-related impairment, whereas those that rely on brain areas with minimal age-related change typically do not. The common marmoset has grown in popularity as a model for neuroscience research, but robust cognitive phenotyping, particularly as a function of age and across multiple cognitive domains, is lacking. This presents a major limitation for the development and evaluation of the marmoset as a model of cognitive aging and leaves open the question of whether they exhibit age-related cognitive impairment that is restricted to some cognitive domains, as in humans. In this study, we characterized stimulus-reward association learning and cognitive flexibility in young adults to geriatric marmosets using a Simple Discrimination task and a Serial Reversal task, respectively. We found that aged marmosets show transient impairment in learning-to-learn but have conserved ability to form stimulus-reward associations. Furthermore, aged marmosets have impaired cognitive flexibility driven by susceptibility to proactive interference. As these impairments are in domains critically dependent on the prefrontal cortex, our findings support prefrontal cortical dysfunction as a prominent feature of neurocognitive aging. This work positions the marmoset as a key model for understanding the neural underpinnings of cognitive aging.
Collapse
Affiliation(s)
- Casey R Vanderlip
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Payton A Asch
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - John H Reynolds
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
3
|
Glavis-Bloom C, Vanderlip CR, Asch PA, Reynolds JH. Domain-specific cognitive impairment reflects prefrontal dysfunction in aged common marmosets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541766. [PMID: 37292989 PMCID: PMC10245905 DOI: 10.1101/2023.05.22.541766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Age-related cognitive impairment is not expressed uniformly across cognitive domains. Cognitive functions that rely on brain areas that undergo substantial neuroanatomical changes with age often show age-related impairment, while those that rely on brain areas with minimal age-related change typically do not. The common marmoset has grown in popularity as a model for neuroscience research, but robust cognitive phenotyping, particularly as a function of age and across multiple cognitive domains, is lacking. This presents a major limitation for the development and evaluation of the marmoset as a model of cognitive aging, and leaves open the question of whether they exhibit age-related cognitive impairment that is restricted to some cognitive domains, as in humans. In this study, we characterized stimulus-reward association learning and cognitive flexibility in young adults to geriatric marmosets using a Simple Discrimination and a Serial Reversal task, respectively. We found that aged marmosets show transient impairment in "learning-to-learn" but have conserved ability to form stimulus-reward associations. Furthermore, aged marmosets have impaired cognitive flexibility driven by susceptibility to proactive interference. Since these impairments are in domains critically dependent on the prefrontal cortex, our findings support prefrontal cortical dysfunction as a prominent feature of neurocognitive aging. This work positions the marmoset as a key model for understanding the neural underpinnings of cognitive aging. Significance Statement Aging is the greatest risk factor for neurodegenerative disease development, and understanding why is critical for the development of effective therapeutics. The common marmoset, a short-lived non-human primate with neuroanatomical similarity to humans, has gained traction for neuroscientific investigations. However, the lack of robust cognitive phenotyping, particularly as a function of age and across multiple cognitive domains limits their validity as a model for age-related cognitive impairment. We demonstrate that aging marmosets, like humans, have impairment that is specific to cognitive domains reliant on brain areas that undergo substantial neuroanatomical changes with age. This work validates the marmoset as a key model for understanding region-specific vulnerability to the aging process.
Collapse
Affiliation(s)
- Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Casey R Vanderlip
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Payton A Asch
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - John H Reynolds
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| |
Collapse
|
4
|
Glavis-Bloom C, Vanderlip CR, Reynolds JH. Age-Related Learning and Working Memory Impairment in the Common Marmoset. J Neurosci 2022; 42:8870-8880. [PMID: 36257687 PMCID: PMC9698676 DOI: 10.1523/jneurosci.0985-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
Aging is the greatest risk factor for the development of neurodegenerative diseases, yet we still do not understand how the aging process leads to pathologic vulnerability. The research community has relied heavily on mouse models, but the considerable anatomic, physiological, and cognitive differences between mice and humans limit their translational relevance. Ultimately, these barriers necessitate the development of novel aging models. As a nonhuman primate (NHP), the common marmoset (Callithrix jacchus) shares many features in common with humans and yet has a significantly shorter lifespan (10 years) than other primates, making it ideally suited to longitudinal studies of aging. Our objective was to evaluate the marmoset as a model of age-related cognitive impairment. To do this, we used the Delayed Recognition Span Task (DRST) to characterize age-related changes in working memory capacity in a cohort of sixteen marmosets, of both sexes, varying in age from young adult to geriatric. These monkeys performed thousands of trials over periods of time ranging up to 50% of their adult lifespan. To our knowledge, this represents the most thorough cognitive profiling of any marmoset aging study conducted to date. By analyzing individual learning curves, we found that aged animals exhibited delayed onset of learning, slowed learning rate after onset, and decreased asymptotic working memory performance. These findings are not accounted for by age-related impairments in motor speed and motivation. This work firmly establishes the marmoset as a model of age-related cognitive impairment.SIGNIFICANCE STATEMENT Understanding the normal aging process is fundamental to identifying therapeutics for neurodegenerative diseases for which aging is the biggest risk factor. Historically, the aging field has relied on animal models that differ markedly from humans, constraining translatability. Here, we firmly establish a short-lived nonhuman primate (NHP), the common marmoset, as a key model of age-related cognitive impairment. We demonstrate, through continuous testing over a substantial portion of the adult marmoset lifespan, that aging is associated with both impaired learning and working memory capacity, unaccounted for by age-related changes in motor speed and motivation. Characterizing individual cognitive aging trajectories reveals inherent heterogeneity, which could lead to earlier identification of the onset of impairment, and extended timelines during which therapeutics are effective.
Collapse
Affiliation(s)
- Courtney Glavis-Bloom
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Casey R Vanderlip
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - John H Reynolds
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
5
|
The Neural Instantiation of an Abstract Cognitive Map for Economic Choice. Neuroscience 2021; 477:106-114. [PMID: 34543674 DOI: 10.1016/j.neuroscience.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022]
Abstract
Since the discovery of cognitive maps in rodent hippocampus (HC), the cognitive map has evolved from originally referring to spatial representations encoding locations and objects in Euclidean spaces to a general low-dimensional organization of information along selected feature dimensions. A cognitive map includes hypothetical constructs that bridge between environmental stimuli and the final overt behavior. To neuroeconomists, utility and utility functions are such constructs with neurobiological basis that drive choice behavior. Emergence of distinct functional neuron groups in the primate orbitofrontal cortex (OFC) during simple economic choice indicates the formation of an abstract cognitive map for organizing information of goods for value computation. Experimental evidence suggests that organization of neuronal activity in such cognitive map reflects the abstraction of core task features. Thus, such map can be adapted to accommodate economic choices under various task contexts.
Collapse
|
6
|
Upright NA, Baxter MG. Prefrontal cortex and cognitive aging in macaque monkeys. Am J Primatol 2021; 83:e23250. [PMID: 33687098 DOI: 10.1002/ajp.23250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/11/2022]
Abstract
Cognitive impairments that accompany aging, even in the absence of neurodegenerative diseases, include deficits in executive function and memory mediated by the prefrontal cortex. Because of the unique differentiation and expansion of the prefrontal cortex in primates, investigations of the neurobiological basis of cognitive aging in nonhuman primates have been particularly informative about the potential basis for age-related cognitive decline in humans. We review the cognitive functions mediated by specific subregions of prefrontal cortex, and their corresponding connections, as well as the evidence for age-related alterations in specific regions of prefrontal cortex. We also discuss evidence for similarities and differences in the effects of aging on prefrontal cortex across species.
Collapse
Affiliation(s)
- Nicholas A Upright
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
8
|
Sams E. Oligodendrocytes in the aging brain. Neuronal Signal 2021; 5:NS20210008. [PMID: 34290887 PMCID: PMC8264650 DOI: 10.1042/ns20210008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
More than half of the human brain volume is made up of white matter: regions where axons are coated in myelin, which primarily functions to increase the conduction speed of axon potentials. White matter volume significantly decreases with age, correlating with cognitive decline. Much research in the field of non-pathological brain aging mechanisms has taken a neuron-centric approach, with relatively little attention paid to other neural cells. This review discusses white matter changes, with focus on oligodendrocyte lineage cells and their ability to produce and maintain myelin to support normal brain homoeostasis. Improved understanding of intrinsic cellular changes, general senescence mechanisms, intercellular interactions and alterations in extracellular environment which occur with aging and impact oligodendrocyte cells is paramount. This may lead to strategies to support oligodendrocytes in aging, for example by supporting myelin synthesis, protecting against oxidative stress and promoting the rejuvenation of the intrinsic regenerative potential of progenitor cells. Ultimately, this will enable the protection of white matter integrity thus protecting cognitive function into the later years of life.
Collapse
Affiliation(s)
- Eleanor Catherine Sams
- Blizard Institute, Barts and The London School of Medicine and Dentistry Centre for Neuroscience, Surgery and Trauma, Blizard Institute, 4 Newark Street, Whitechapel E1 2AT, London
| |
Collapse
|
9
|
Adam R, Schaeffer DJ, Johnston K, Menon RS, Everling S. Structural alterations in cortical and thalamocortical white matter tracts after recovery from prefrontal cortex lesions in macaques. Neuroimage 2021; 232:117919. [PMID: 33652141 DOI: 10.1016/j.neuroimage.2021.117919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
Unilateral damage to the frontoparietal network typically impairs saccade target selection within the contralesional visual hemifield. Severity of deficits and the degree of recovery have been associated with widespread network dysfunction, yet it is not clear how these behavioural and functional brain changes relate with the underlying structural white matter tracts. Here, we investigated whether recovery after unilateral prefrontal cortex (PFC) lesions was associated with changes in white matter microstructure across large-scale frontoparietal cortical and thalamocortical networks. Diffusion-weighted imaging was acquired in four male rhesus macaques at pre-lesion, week 1, and week 8-16 post-lesion when target selection deficits largely recovered. Probabilistic tractography was used to reconstruct cortical frontoparietal fiber tracts, including the superior longitudinal fasciculus (SLF) and transcallosal fibers connecting the PFC or posterior parietal cortex (PPC), as well as thalamocortical fiber tracts connecting the PFC and PPC to thalamic nuclei. We found that the two animals with small PFC lesions showed increased fractional anisotropy in both cortical and thalamocortical fiber tracts when behaviour had recovered. However, we found that fractional anisotropy decreased in cortical frontoparietal tracts after larger PFC lesions yet increased in some thalamocortical tracts at the time of behavioural recovery. These findings indicate that behavioural recovery after small PFC lesions may be supported by both cortical and subcortical areas, whereas larger PFC lesions may have induced widespread structural damage and hindered compensatory remodeling in the cortical frontoparietal network.
Collapse
Affiliation(s)
- Ramina Adam
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, PA, United States
| | - Kevin Johnston
- The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Ravi S Menon
- Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Medical Biophysics, University of Western Ontario, London, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada.
| |
Collapse
|
10
|
Gray DT, De La Peña NM, Umapathy L, Burke SN, Engle JR, Trouard TP, Barnes CA. Auditory and Visual System White Matter Is Differentially Impacted by Normative Aging in Macaques. J Neurosci 2020; 40:8913-8923. [PMID: 33051354 PMCID: PMC7659446 DOI: 10.1523/jneurosci.1163-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/06/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022] Open
Abstract
Deficits in auditory and visual processing are commonly encountered by older individuals. In addition to the relatively well described age-associated pathologies that reduce sensory processing at the level of the cochlea and eye, multiple changes occur along the ascending auditory and visual pathways that further reduce sensory function in each domain. One fundamental question that remains to be directly addressed is whether the structure and function of the central auditory and visual systems follow similar trajectories across the lifespan or sustain the impacts of brain aging independently. The present study used diffusion magnetic resonance imaging and electrophysiological assessments of auditory and visual system function in adult and aged macaques to better understand how age-related changes in white matter connectivity at multiple levels of each sensory system might impact auditory and visual function. In particular, the fractional anisotropy (FA) of auditory and visual system thalamocortical and interhemispheric corticocortical connections was estimated using probabilistic tractography analyses. Sensory processing and sensory system FA were both reduced in older animals compared with younger adults. Corticocortical FA was significantly reduced only in white matter of the auditory system of aged monkeys, while thalamocortical FA was lower only in visual system white matter of the same animals. Importantly, these structural alterations were significantly associated with sensory function within each domain. Together, these results indicate that age-associated deficits in auditory and visual processing emerge in part from microstructural alterations to specific sensory white matter tracts, and not from general differences in white matter condition across the aging brain.SIGNIFICANCE STATEMENT Age-associated deficits in sensory processing arise from structural and functional alterations to both peripheral sensory organs and central brain regions. It remains unclear whether different sensory systems undergo similar or distinct trajectories in function across the lifespan. To provide novel insights into this question, this study combines electrophysiological assessments of auditory and visual function with diffusion MRI in aged macaques. The results suggest that age-related sensory processing deficits in part result from factors that impact the condition of specific white matter tracts, and not from general decreases in connectivity between sensory brain regions. Such anatomic specificity argues for a framework aimed at understanding vulnerabilities with relatively local influence and brain region specificity.
Collapse
Affiliation(s)
- Daniel T Gray
- Division of Neural System, Memory and Aging, University of Arizona, Tucson, Arizona 85724
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
| | - Nicole M De La Peña
- Division of Neural System, Memory and Aging, University of Arizona, Tucson, Arizona 85724
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
| | - Lavanya Umapathy
- Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85724
| | - Sara N Burke
- Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, Florida 32609
| | - James R Engle
- Division of Neural System, Memory and Aging, University of Arizona, Tucson, Arizona 85724
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
| | - Theodore P Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724
| | - Carol A Barnes
- Division of Neural System, Memory and Aging, University of Arizona, Tucson, Arizona 85724
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, Arizona 85724
| |
Collapse
|
11
|
Gray DT, Umapathy L, De La Peña NM, Burke SN, Engle JR, Trouard TP, Barnes CA. Auditory Processing Deficits Are Selectively Associated with Medial Temporal Lobe Mnemonic Function and White Matter Integrity in Aging Macaques. Cereb Cortex 2020; 30:2789-2803. [PMID: 31833551 DOI: 10.1093/cercor/bhz275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Deficits in auditory function and cognition are hallmarks of normative aging. Recent evidence suggests that hearing-impaired individuals have greater risks of developing cognitive impairment and dementia compared to people with intact auditory function, although the neurobiological bases underlying these associations are poorly understood. Here, a colony of aging macaques completed a battery of behavioral tests designed to probe frontal and temporal lobe-dependent cognition. Auditory brainstem responses (ABRs) and visual evoked potentials were measured to assess auditory and visual system function. Structural and diffusion magnetic resonance imaging were then performed to evaluate the microstructural condition of multiple white matter tracts associated with cognition. Animals showing higher cognitive function had significantly better auditory processing capacities, and these associations were selectively observed with tasks that primarily depend on temporal lobe brain structures. Tractography analyses revealed that the fractional anisotropy (FA) of the fimbria-fornix and hippocampal commissure were associated with temporal lobe-dependent visual discrimination performance and auditory sensory function. Conversely, FA of frontal cortex-associated white matter was not associated with auditory processing. Visual sensory function was not associated with frontal or temporal lobe FA, nor with behavior. This study demonstrates significant and selective relationships between ABRs, white matter connectivity, and higher-order cognitive ability.
Collapse
Affiliation(s)
- Daniel T Gray
- Division of Neural System, Memory and Aging.,Evelyn F. McKnight Brain Institute
| | - Lavanya Umapathy
- Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Nicole M De La Peña
- Division of Neural System, Memory and Aging.,Evelyn F. McKnight Brain Institute
| | - Sara N Burke
- Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - James R Engle
- Division of Neural System, Memory and Aging.,Evelyn F. McKnight Brain Institute
| | - Theodore P Trouard
- Evelyn F. McKnight Brain Institute.,Department of Biomedical Engineering
| | - Carol A Barnes
- Division of Neural System, Memory and Aging.,Evelyn F. McKnight Brain Institute.,Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|