Shackebaei D, Hesari M, Ramezani-Aliakbari S, Hoseinkhani Z, Ramezani-Aliakbari F. Gallic acid protects against isoproterenol-induced cardiotoxicity in rats.
Hum Exp Toxicol 2022;
41:9603271211064532. [PMID:
35193428 DOI:
10.1177/09603271211064532]
[Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND
Gallic acid (GA) is a polyphenolic agent with interesting pharmacological impacts on the cardiovascular system.
OBJECTIVE
The present study purposed to study the protective effects of GA at 25 and 50 mg/kg against isoproterenol (ISO)-induced cardiac damage in ischemia/reperfusion (I/R) in rats.
METHODS
Male Wistar rats were randomly assigned into six groups: Control, Control treated with GA at 25 mg/kg (GA25), Control treated with GA at 50 mg/kg (GA50), Hypertrophic rats induced by ISO (ISO), Hypertrophic rats treated with GA at 25 mg/kg (ISO+GA25), and Hypertrophic rats treated with GA at 50 mg/kg (ISO+GA50). Heart isolation was performed to induce a cardiac I/R injury model. Cardiac hemodynamic parameters were recorded. Serum Lactate Dehydrogenase (LDH) and Creatine Kinase-MB (CK-MB) and cardiac Superoxide dismutases (SOD) levels were evaluated. The gene expression of Sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) was assessed.
RESULTS
We found that GA at 50 mg/kg was significantly increased cardiac function at post I/R period in ISO-induced hypertrophic hearts. Moreover, it suppressed cardiac hypertrophy, the serum LDH and CK-MB levels in ISO injected rats. Administration of GA at 50 mg/kg was significantly increased SOD level and SERCA2a gene expression in the hypertrophic hearts.
CONCLUSION
GA at 50 mg/kg could improve cardiac performance possibly by increasing antioxidant defense enzymes, reducing cell damage, and enhancing SERCA2a gene expression in hypertrophic heart induced by ISO in I/R injury conditions.
Collapse