1
|
Eka Saputri M, Aisyah Rahmalia Effendi S, Nadila R, Azzam Fajar S, Damajanti Soejoedono R, Handharyani E, Nadia Poetri O. Immunoglobulin yolk targeting spike 1, receptor binding domain of spike glycoprotein and nucleocapsid of SARS-CoV-2 blocking RBD-ACE2 binding interaction. Int Immunopharmacol 2022; 112:109280. [PMID: 36183680 PMCID: PMC9515349 DOI: 10.1016/j.intimp.2022.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
Coronavirus disease (COVID)-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become a global pandemic disease that has social and economic chaos. An alternative mitigation strategy may involve the use of specific immunoglobulin (Ig)-Y derived from chicken eggs. Our study aimed to evaluate the neutralizing potential of specific IgY targeting S1, receptor-binding-domain (RBD) of spike glycoprotein and nucleocapsid (N) of SARS-CoV-2 to inhibit RBD and angiotensin-converting-enzyme-2 (ACE2) binding interaction. Hy-Line Brown laying hens were immunized with recombinant S1, RBD spike glycoprotein, and nucleocapsid (N) of SARS-CoV-2. The presence of specific S1,RBD,N-IgY in serum and egg yolk was verified by indirect enzyme-linked immunosorbent assay (ELISA). Specific S1,RBD,N-IgY was purified and characterized from egg yolk using sodium-dodecyl-sulfate-polyacrylamide-gel-electrophoresis (SDS-PAGE), and was subsequently evaluated for inhibition of the RBD-ACE2 binding interaction in vitro. Specific IgY was present in serum at 1 week post–initial immunization (p.i.i), whereas its present in egg yolk was confirmed at 4 weeks p.i.i. Specific S1,RBD,N-IgY in serum was able to inhibit RBD-ACE2 binding interaction between 4 and 15 weeks p.i.i. The results of the SDS-PAGE revealed the presence of bands with molecular weights of 180 kDa, indicating the presence of whole IgY. Our results demonstrated that S1,RBD,N-IgY was able to inhibit RBD-ACE2 binding interaction in vitro, suggesting its potential use in blocking virus entry. Our study also demonstrated proof-of-concept that laying hens were able to produce this specific IgY, which could block the viral binding and large production of this specific IgY is feasible.
Collapse
Affiliation(s)
- Meliana Eka Saputri
- Study Programme of Medical Microbiology, IPB Postgraduate School, IPB University, Jl Agatis, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Siti Aisyah Rahmalia Effendi
- Study Programme of Veterinary Medicine, School of Veterinary Medicine and Biomedical Science, IPB University, Jl Agatis, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Rifa Nadila
- Study Programme of Veterinary Medicine, School of Veterinary Medicine and Biomedical Science, IPB University, Jl Agatis, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Syauqi Azzam Fajar
- Study Programme of Veterinary Medicine, School of Veterinary Medicine and Biomedical Science, IPB University, Jl Agatis, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Retno Damajanti Soejoedono
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Science, IPB University, Jl Agatis, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Ekowati Handharyani
- Division of Veterinary Pathology, School of Veterinary Medicine and Biomedical Science, IPB University, Jl Agatis, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Okti Nadia Poetri
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Science, IPB University, Jl Agatis, Kampus IPB Dramaga, Bogor 16680, Indonesia.
| |
Collapse
|
2
|
Nazeam JA, Singab ANB. Immunostimulant plant proteins: Potential candidates as vaccine adjuvants. Phytother Res 2022; 36:4345-4360. [PMID: 36128599 PMCID: PMC9538006 DOI: 10.1002/ptr.7624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is shaking up global scientific structures toward addressing antibiotic resistance threats and indicates an urgent need to develop more cost-effective vaccines. Vaccine adjuvants play a crucial role in boosting immunogenicity and improving vaccine efficacy. The toxicity and adversity of most adjuvant formulations are the major human immunization problems, especially in routine pediatric and immunocompromised patients. The present review focused on preclinical studies of immunoadjuvant plant proteins in use with antiparasitic, antifungal, and antiviral vaccines. Moreover, this report outlines the current perspective of immunostimulant plant protein candidates that can be used by researchers in developing new generations of vaccine-adjuvants. Future clinical studies are required to substantiate the plant proteins' safety and applicability as a vaccine adjuvant in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Jilan A. Nazeam
- Pharmacognosy Department, Faculty of PharmacyOctober 6 UniversityGizaEgypt
| | | |
Collapse
|
3
|
Escalante-Sansores AR, Absalón AE, Cortés-Espinosa DV. Improving immunogenicity of poultry vaccines by use of molecular adjuvants. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Angel E. Absalón
- Vaxbiotek SC Departamento de Investigación y Desarrollo, Cuautlancingo, Puebla, Mexico
| | - Diana V. Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicadla, Tlaxcala, Mexico
| |
Collapse
|
4
|
Shebl RI, Amer ME, Abuamara TMM, Matar ER, Ahmed HF, Gomah TA, El Moselhy LE, Abu-Elghait M, Mohamed AF. Staphylococcus aureus derived hyaluronic acid and bacillus Calmette-Guérin purified proteins as immune enhancers to rabies vaccine and related immuno-histopathological alterations. Clin Exp Vaccine Res 2021; 10:229-239. [PMID: 34703805 PMCID: PMC8511591 DOI: 10.7774/cevr.2021.10.3.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose One of the essential goals regarding the successful control of rabies infection is the development of a safe, effective, and inexpensive vaccine. the current study aimed to evaluate the inactivation potential of β-propiolactone (βPL), binary ethyleneimine (BEI), and hydrogen peroxide (H2O2). Materials and Methods Estimating the inactivation kinetics of βPL, BEI, and H2O2 revealed that the tested inactivants could completely and irreversibly inactivate rabies virus within 2, 12, and 4 hours, respectively while maintaining its viral immunogenicity. The potency of βPL, BEI, and H2O2 inactivated vaccines was higher than the World Health Organization acceptance limit and were in the order of 3.75, 4.21, and 3.64 IU/mL, respectively. Monitoring the humoral and cellular immunity elicited post-immunization using Staphylococcus aureus derived hyaluronic acid (HA) and bacillus Calmette-Guérin purified protein derivative (PPD) adjuvanted rabies vaccine candidates were carried out using enzyme-linked immunosorbent assay. Results Results demonstrated that both adjuvants could progressively enhance the release of anti-rabies total immunoglobulin G as well as the pro-inflammatory mediators (interferon-gamma and interleukin-5) relative to time. However, a higher immune response was developed in the case of HA adjuvanted rabies vaccine compared to PPD adjuvanted one. The harmful consequences of the tested adjuvants were considered via investigating the histopathological changes in the tissues of the immunized rats using hematoxylin and eosin stain. Lower adverse effects were observed post-vaccination with HA and PPD adjuvanted vaccines compared to that detected following administration of the currently used alum as standard adjuvant. Conclusion Our findings suggested that HA and PPD could serve as a promising platform for the development of newly adjuvanted rabies vaccines with elevated immune enhancing potentials and lower risk of health hazards.
Collapse
Affiliation(s)
- Rania Ibrahim Shebl
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), Cairo, Egypt
| | - Mohamed E Amer
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Tamer M M Abuamara
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Emadeldin R Matar
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hassan Fathy Ahmed
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Laila E El Moselhy
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Mohammed Abu-Elghait
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Aly Fahmy Mohamed
- International Center for Training and Advanced Researches (ICTAR-Egypt), Cairo, Egypt
| |
Collapse
|
5
|
Ndawula C. From Bench to Field: A Guide to Formulating and Evaluating Anti-Tick Vaccines Delving beyond Efficacy to Effectiveness. Vaccines (Basel) 2021; 9:vaccines9101185. [PMID: 34696291 PMCID: PMC8539545 DOI: 10.3390/vaccines9101185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
Ticks are ubiquitous blood-sucking ectoparasites capable of transmitting a wide range of pathogens such as bacteria, viruses, protozoa, and fungi to animals and humans. Although the use of chemicals (acaricides) is the predominant method of tick-control, there are increasing incidents of acaricide tick resistance. Furthermore, there are concerns over accumulation of acaricide residues in meat, milk and in the environment. Therefore, alternative methods of tick-control have been proposed, of which anti-tick cattle vaccination is regarded as sustainable and user-friendly. Over the years, tremendous progress has been made in identifying and evaluating novel candidate tick vaccines, yet none of them have reached the global market. Until now, Bm86-based vaccines (Gavac™ in Cuba and TickGARDPLUS™ Australia-ceased in 2010) are still the only globally commercialized anti-tick vaccines. In contrast to Bm86, often, the novel candidate anti-tick vaccines show a lower protection efficacy. Why is this so? In response, herein, the potential bottlenecks to formulating efficacious anti-tick vaccines are examined. Aside from Bm86, the effectiveness of other anti-tick vaccines is rarely assessed. So, how can the researchers assess anti-tick vaccine effectiveness before field application? The approaches that are currently used to determine anti-tick vaccine efficacy are re-examined in this review. In addition, a model is proposed to aid in assessing anti-tick vaccine effectiveness. Finally, based on the principles for the development of general veterinary vaccines, a pipeline is proposed to guide in the development of anti-tick vaccines.
Collapse
Affiliation(s)
- Charles Ndawula
- National Agricultural Research Organization, P.O. Box 295, Entebbe, Wakiso 256, Uganda;
- National Livestock Resources Research Institute, Vaccinology Research Programme, P.O. Box 5704, Nakyesasa, Wakiso 256, Uganda
| |
Collapse
|
6
|
Pusch L, Brox R, Scheuer K, Yokosawa T, Wu M, Zubiri BA, Spiecker E, Jandt KD, Fischer D, Hackstein H. Distinct endocytosis and immune activation of poly(lactic-co-glycolic) acid nanoparticles prepared by single- and double-emulsion evaporation. Nanomedicine (Lond) 2021; 16:2075-2094. [PMID: 34523349 DOI: 10.2217/nnm-2021-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Poly(lactic-co-glycolic) acid (PLGA) nanoparticles can be prepared by emulsion-solvent-evaporation from o/w and w1/o/w2 emulsions. Aims: To elaborate similarities and differences regarding mechanical, morphological and physicochemical properties, as well as endocytosis and dose-dependent immune responses by primary human leukocytes between nanoparticles prepared by these two methods. Methods: Fluorescently labeled as well as TLR agonist (R848)-loaded PLGA nanoparticles were prepared via both single- and double-emulsion solvent evaporation. Results: Particles prepared by both methods were similar in chemical composition and surface charge but exhibited slight differences in size and morphology. Pronounced differences were found for loading, dissolution and mechanical properties. The particles were differently endocytosed by monocytes and induced qualitatively and quantitatively different immune responses. Conclusions: Variations in nanoparticle preparation can affect particle-derived immunological characteristics.
Collapse
Affiliation(s)
- Lennart Pusch
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Regine Brox
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Karl Scheuer
- Department of Materials Science & Technology, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Mingjian Wu
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Erdmann Spiecker
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Klaus D Jandt
- Department of Materials Science & Technology, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Dagmar Fischer
- Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 4 (Haus 6), Erlangen, 91058, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| |
Collapse
|
7
|
Evtushenko EA, Ryabchevskaya EM, Nikitin NA, Atabekov JG, Karpova OV. Plant virus particles with various shapes as potential adjuvants. Sci Rep 2020; 10:10365. [PMID: 32587281 PMCID: PMC7316779 DOI: 10.1038/s41598-020-67023-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
Plant viruses are biologically safe for mammals and can be successfully used as a carrier/platform to present foreign epitopes in the course of creating novel putative vaccines. However, there is mounting evidence that plant viruses, their virus-like and structurally modified particles may also have an immunopotentiating effect on antigens not bound with their surface covalently. Here, we present data on the adjuvant properties of plant viruses with various shapes (Tobacco mosaic virus, TMV; Potato virus X, PVX; Cauliflower mosaic virus, CaMV; Bean mild mosaic virus, BMMV) and structurally modified TMV spherical particles (SPs). We have analysed the effectiveness of immune response to individual model antigens (ovalbumin, OVA/hen egg lysozyme, HEL) and to OVA/HEL in compositions with plant viruses/SPs, and have shown that CaMV, TMV and SPs can effectively induce total IgG titers to model antigen. Some intriguing data were obtained when analysing the immune response to the plant viruses/SPs themselves. Strong immunity was induced to CaMV, BMMV and PVX, whereas TMV and SPs stimulated considerably lower self-IgG titers. Our results provide new insights into the immunopotentiating properties of plant viruses and can be useful in devising adjuvants based on plant viruses.
Collapse
Affiliation(s)
- Ekaterina A Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation.
| | - Ekaterina M Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Nikolai A Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Joseph G Atabekov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| | - Olga V Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119234, Russian Federation
| |
Collapse
|
8
|
Mortazavi SS, Haghighat S, Mahdavi M. Recombinant PBP2a of methicillin-resistant S. aureus formulation in Alum and Montanide ISA266 adjuvants induced cellular and humoral immune responses with protection in Balb/C mice. Microb Pathog 2019; 140:103945. [PMID: 31874228 DOI: 10.1016/j.micpath.2019.103945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus is an important cause of both hospital and community acquired infections worldwide. S.aureus can develop multidrug resistance; thus, immunotherapy can be a rational alternative. High level β-lactam resistance of S. aureus has been attributed to the penicillin binding protein 2a (PBP2a). In this study, we assessed the immunogenicity and protectivity of PBP2a formulated in Montanide ISA266 and Alum adjuvants. Recombinant PBP2a with a molecular weight of approximately 13 kDa was expressed and purified by nickel-nitrilotriacetic acid (NI-NTA) affinity chromatography and characterized by SDS-PAGE and Western blot. To investigate the immunogenicity and protective effects of recombinant protein, 20 μg of r-PBP2a in various formulations were subcutaneously injected in different groups. Two booster vaccinations were carried out in two-week intervals and blood samples were collected two weeks after each injection. To determine the type of induced immune response, sera and splenocytes were analyzed by ELISA for total IgG and isotypes (IgG1 and IgG2a) and cytokine secretion (IFN-γ, IL-4, IL-17 and TNF-α), respectively. Three weeks following the last immunization, experimental mice were challenged with 5 × 108 CFU of bacteria intraperitoneally and mortality rate and bacterial load were assessed. Interestingly, analysis of humoral immune responses revealed that administration of r-PBP2a with Montanide ISA266 significantly increased specific IgG responses and also IgG1 isotype compared to alum-adjuvanted vaccine group. Also, r-PBP2a formulation with alum and MontanideISA266 adjuvants raised IFN-γ, IL-4, IL-17 cytokines secretion, and protectivity following experimental challenge. The results of the present study provide evidences for immunogenicity and protectivity of PBP2a protein as a vaccine candidate.
Collapse
Affiliation(s)
- Seyedeh Shadi Mortazavi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Magiri R, Lai K, Huang Y, Mutwiri G, Wilson HL. Innate immune response profiles in pigs injected with vaccine adjuvants polydi(sodium carboxylatoethylphenoxy)phosphazene (PCEP) and Emulsigen. Vet Immunol Immunopathol 2019; 209:7-16. [PMID: 30885308 DOI: 10.1016/j.vetimm.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/23/2022]
Abstract
Vaccines are formulated with adjuvants to enhance or direct antigen-specific immune responses against pathogens. However, the mechanisms of action (MOA) of adjuvants are not well understood and are under-investigated in large animal species. We have previously reported that injection of mice induced innate immune responses as indicated by increased cell recruitment and cytokine production at the site of injection with polyphosphazene (PCEP) adjuvant. In the present study, we evaluated whether PCEP induced similar innate immune responses in pigs. Piglets were injected with either PCEP or Emulsigen intradermally (I.D.) and the local cellular infiltration and cytokine production were evaluated at the site of injection and the draining lymph nodes. PCEP induced infiltration of macrophages, T and B cells, leucocytes and necrotic debris at the site of injection as well as PCEP-induced leucocyte infiltration in the draining lymph nodes. Emulsigen induced diffuse infiltration of leucocytes, macrophages, and lymphocytes at the site of injection as well as at the draining lymph nodes. PCEP induced significant production of interleukin IL-1β, and IL-13 at the site of injection and IL-1β, and IL-6 at the draining lymph nodes. Emulsigen promoted the production of IL-1β, IL-6, and IL-12 at the site of injection but not in the draining lymph nodes. No cytokines were detected in blood after injection of either adjuvant. Together, our data indicate that in pigs, the adjuvants PCEP and Emulsigen stimulate early innate immune responses at the injection site by creating an immunocompetent environment that may contribute to increased immunogenicity of the co-administered antigens.
Collapse
Affiliation(s)
- Royford Magiri
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Ken Lai
- Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Yanyun Huang
- Prairie Diagnostic Services, 52 Campus Drive, Saskatoon, SK, Canada
| | - George Mutwiri
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Heather L Wilson
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
10
|
Zabalza-Baranguá A, San-Román B, Chacón-Díaz C, de Miguel MJ, Muñoz PM, Iriarte M, Blasco JM, Grilló MJ. GFP tagging of Brucella melitensis Rev1 allows the identification of vaccinated sheep. Transbound Emerg Dis 2018; 66:505-516. [PMID: 30375177 PMCID: PMC7379934 DOI: 10.1111/tbed.13053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
Brucellosis is a worldwide zoonosis causing important economic loss and a public health problem. Small ruminants are the preferred hosts of Brucella melitensis and thus the main source of human infections. Effective control of sheep and goat brucellosis has been achieved in several countries through vaccination with the live-attenuated B. melitensis Rev1 vaccine. However, Rev1 induces a long-lasting serological response that hinders the differentiation between infected and vaccinated animals. A Rev1::gfp strain expressing constitutively the Green Fluorescent Protein (GFP) was built by stable insertion of a mini-Tn7-gfp in the glmS-recG non-codifying chromosomal region. An associated indirect ELISA-GFP was developed to identify anti-GFP antibodies in vaccinated animals. The resulting Rev1::gfp kept the biological properties of the Rev1 reference strain, including residual virulence and efficacy in mice, and was readily distinguished from Rev1 and other Brucella field strains by direct visualization under ultraviolet illumination, fluorescence microscopy and a multiplex PCR-GFP. The Rev1::gfp strain did not elicit anti-GFP antibodies itself in lambs but when applied in combination with recombinant GFP induced an intense and long-lasting (>9 months) anti-GFP serological response readily detectable by the ELISA-GFP. Overall, our results confirm that Rev1 GFP-tagging can be a suitable alternative for identifying vaccinated sheep in infected contexts.
Collapse
Affiliation(s)
- Ana Zabalza-Baranguá
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Mutilva, Navarra, Spain
| | - Beatriz San-Román
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Mutilva, Navarra, Spain
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - María-Jesús de Miguel
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Instituto Agroalimentario de Aragón (IA2), Gobierno de Aragón, Zaragoza, Spain
| | - Pilar-María Muñoz
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Instituto Agroalimentario de Aragón (IA2), Gobierno de Aragón, Zaragoza, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical - Dpto. de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - José-María Blasco
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Instituto Agroalimentario de Aragón (IA2), Gobierno de Aragón, Zaragoza, Spain
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Mutilva, Navarra, Spain
| |
Collapse
|