1
|
Mallet D, Goutaudier R, Barbier EL, Carnicella S, Colca JR, Fauvelle F, Boulet S. Re-routing Metabolism by the Mitochondrial Pyruvate Carrier Inhibitor MSDC-0160 Attenuates Neurodegeneration in a Rat Model of Parkinson's Disease. Mol Neurobiol 2022; 59:6170-6182. [PMID: 35895232 DOI: 10.1101/2022.01.17.476616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/10/2022] [Indexed: 05/25/2023]
Abstract
A growing body of evidence supports the idea that mitochondrial dysfunction might represent a key feature of Parkinson's disease (PD). Central regulators of energy production, mitochondria, are also involved in several other essential functions such as cell death pathways and neuroinflammation which make them a potential therapeutic target for PD management. Interestingly, recent studies related to PD have reported a neuroprotective effect of targeting mitochondrial pyruvate carrier (MPC) by the insulin sensitizer MSDC-0160. As the sole point of entry of pyruvate into the mitochondrial matrix, MPC plays a crucial role in energetic metabolism which is impacted in PD. This study therefore aimed at providing insights into the mechanisms underlying the neuroprotective effect of MSDC-0160. We investigated behavioral, cellular, and metabolic impact of chronic MSDC-0160 treatment in unilateral 6-OHDA PD rats. We evaluated mitochondrially related processes through the expression of pivotal mitochondrial enzymes in dorsal striatal biopsies and the level of metabolites in serum samples using nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. MSDC-0160 treatment in unilateral 6-OHDA rats improved motor behavior, decreased dopaminergic denervation, and reduced mTOR activity and neuroinflammation. Concomitantly, MSDC-0160 administration strongly modified energy metabolism as revealed by increased ketogenesis, beta oxidation, and glutamate oxidation to satisfy energy needs and maintain energy homeostasis. MSDC-0160 exerts its neuroprotective effect through reorganization of multiple pathways connected to energy metabolism.
Collapse
Affiliation(s)
- David Mallet
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Raphael Goutaudier
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Emmanuel L Barbier
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Université Grenoble Alpes Inserm, US17, CNRS, UMS, 3552, CHU Grenoble Alpes IRMaGe, Grenoble, France
| | - Sebastien Carnicella
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Jerry R Colca
- Metabolic Solutions Development Company, Kalamazoo, MI, 49007, USA
| | - Florence Fauvelle
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Université Grenoble Alpes Inserm, US17, CNRS, UMS, 3552, CHU Grenoble Alpes IRMaGe, Grenoble, France
| | - Sabrina Boulet
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
2
|
Mallet D, Goutaudier R, Barbier EL, Carnicella S, Colca JR, Fauvelle F, Boulet S. Re-routing Metabolism by the Mitochondrial Pyruvate Carrier Inhibitor MSDC-0160 Attenuates Neurodegeneration in a Rat Model of Parkinson's Disease. Mol Neurobiol 2022; 59:6170-6182. [PMID: 35895232 DOI: 10.1007/s12035-022-02962-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
A growing body of evidence supports the idea that mitochondrial dysfunction might represent a key feature of Parkinson's disease (PD). Central regulators of energy production, mitochondria, are also involved in several other essential functions such as cell death pathways and neuroinflammation which make them a potential therapeutic target for PD management. Interestingly, recent studies related to PD have reported a neuroprotective effect of targeting mitochondrial pyruvate carrier (MPC) by the insulin sensitizer MSDC-0160. As the sole point of entry of pyruvate into the mitochondrial matrix, MPC plays a crucial role in energetic metabolism which is impacted in PD. This study therefore aimed at providing insights into the mechanisms underlying the neuroprotective effect of MSDC-0160. We investigated behavioral, cellular, and metabolic impact of chronic MSDC-0160 treatment in unilateral 6-OHDA PD rats. We evaluated mitochondrially related processes through the expression of pivotal mitochondrial enzymes in dorsal striatal biopsies and the level of metabolites in serum samples using nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. MSDC-0160 treatment in unilateral 6-OHDA rats improved motor behavior, decreased dopaminergic denervation, and reduced mTOR activity and neuroinflammation. Concomitantly, MSDC-0160 administration strongly modified energy metabolism as revealed by increased ketogenesis, beta oxidation, and glutamate oxidation to satisfy energy needs and maintain energy homeostasis. MSDC-0160 exerts its neuroprotective effect through reorganization of multiple pathways connected to energy metabolism.
Collapse
Affiliation(s)
- David Mallet
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Raphael Goutaudier
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Emmanuel L Barbier
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.,Université Grenoble Alpes Inserm, US17, CNRS, UMS, 3552, CHU Grenoble Alpes IRMaGe, Grenoble, France
| | - Sebastien Carnicella
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Jerry R Colca
- Metabolic Solutions Development Company, Kalamazoo, MI, 49007, USA
| | - Florence Fauvelle
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.,Université Grenoble Alpes Inserm, US17, CNRS, UMS, 3552, CHU Grenoble Alpes IRMaGe, Grenoble, France
| | - Sabrina Boulet
- Université Grenoble Alpes Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
3
|
Colca JR, Finck BN. Metabolic Mechanisms Connecting Alzheimer's and Parkinson's Diseases: Potential Avenues for Novel Therapeutic Approaches. Front Mol Biosci 2022; 9:929328. [PMID: 35782864 PMCID: PMC9243557 DOI: 10.3389/fmolb.2022.929328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's (AD) and Parkinson's Diseases (PD) are common neurodegenerative disorders growing in incidence and prevalence and for which there are no disease-modifying treatments. While there are considerable complexities in the presentations of these diseases, the histological pictures of these pathologies, as well as several rare genetic predispositions for each, point to the involvement of maladaptive protein processing and inflammation. Importantly, the common presentations of AD and PD are connected to aging and to dysmetabolism, including common co-diagnosis of metabolic syndrome or diabetes. Examination of anti-diabetic therapies in preclinical models and in some observational clinical studies have suggested effectiveness of the first generation insulin sensitizer pioglitazone in both AD and PD. Recently, the mitochondrial pyruvate carrier (MPC) was shown to be a previously unrecognized target of pioglitazone. New insulin sensitizers are in development that can be dosed to full engagement of this previously unappreciated mitochondrial target. Here we review molecular mechanisms that connect modification of pyruvate metabolism with known liabilities of AD and PD. The mechanisms involve modification of autophagy, inflammation, and cell differentiation in various cell types including neurons, glia, macrophages, and endothelium. These observations have implications for the understanding of the general pathology of neurodegeneration and suggest general therapeutic approaches to disease modification.
Collapse
Affiliation(s)
- Jerry R. Colca
- Metabolic Solutions Development Company, Western Michigan University, Kalamazoo, MI, United States
| | - Brian N. Finck
- Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|